Implementing differential privacy in AI research is crucial for protecting sensitive data, especially in the US, ensuring compliance with privacy regulations while still enabling valuable insights from the data.

In the United States, the importance of protecting sensitive data in Artificial Intelligence (AI) research cannot be overstated. This article serves as a comprehensive guide on how to implement differential privacy in your AI research to protect sensitive data: a US guide, ensuring both innovation and ethical data handling.

Understanding Differential Privacy for AI in the US

Differential privacy (DP) is a system for publicly sharing information about a dataset by describing the patterns of groups within the dataset while withholding information about individuals in the dataset. It’s particularly relevant in the US due to the increasing focus on data privacy regulations and ethical considerations in AI research.

What is Differential Privacy?

At its core, differential privacy is a mathematical definition of privacy. It ensures that the addition or removal of any single data point in a dataset does not significantly alter the outcome of any analysis performed on that dataset.

Why is it Important in the US?

In the United States, various laws and frameworks such as HIPAA (Health Insurance Portability and Accountability Act) and the California Consumer Privacy Act (CCPA) mandate stringent data protection measures. Differential privacy provides a robust mechanism to comply with these regulations, ensuring that AI research can proceed without compromising individual privacy rights.

A flowchart illustrating the steps of implementing differential privacy in an AI research project. The flowchart includes steps like data collection, noise addition, and data analysis, each with a short description.

  • Data Minimization: Collect only the necessary data points for your research.
  • Noise Addition: Introduce calibrated noise to the data to obscure individual contributions.
  • Privacy Budget: Carefully manage the privacy budget (epsilon and delta) to balance privacy and utility.

Differential privacy isn’t just a technical exercise; it’s a commitment to ethical AI development. By understanding and implementing DP, researchers in the US can lead the way in responsible data science – fostering innovation while respecting individual rights and complying with legal standards.

Key Concepts of Differential Privacy

To effectively implement differential privacy, it’s crucial to understand its core components. These concepts provide the foundation for protecting sensitive data while preserving data utility for meaningful analysis.

Epsilon (ε) and Delta (δ)

Epsilon (ε) represents the privacy loss, indicating how much the privacy of individuals is compromised. A smaller epsilon value means stronger privacy protection. Delta (δ) is the probability that the differential privacy guarantee might fail. It represents the risk of a complete privacy breach. Typically, delta is set to be very small.

Sensitivity

Sensitivity measures the maximum change in the outcome of a query when a single individual’s data is added or removed from the dataset. It’s important to accurately calculate the sensitivity of your queries to calibrate the amount of noise needed to ensure differential privacy.

Noise Addition Mechanisms

Noise addition is a key technique in differential privacy. Mechanisms like the Laplace mechanism and Gaussian mechanism add random noise to the query results to obscure individual contributions.

  • Laplace Mechanism: Adds noise drawn from a Laplace distribution, suitable for queries with bounded sensitivity.
  • Gaussian Mechanism: Adds noise drawn from a Gaussian distribution, often used for more complex queries and compositions.
  • Exponential Mechanism: Used when the output is not numerical but rather from a discrete set, choosing outputs randomly based on a scoring function.

By grasping these key concepts, AI researchers in the US can make informed decisions about how to best apply differential privacy techniques to their specific research contexts. This understanding ensures that privacy protections are robust and effective.

Steps to Implement Differential Privacy in AI Research

Implementing differential privacy requires a structured approach. By following these steps, AI researchers in the US can effectively integrate DP into their projects, ensuring robust privacy protection for sensitive data.

A diagram showing the balance between privacy and utility in differential privacy. The diagram illustrates how increasing privacy (adding more noise) can decrease data utility, and vice versa.

Step 1: Data Preprocessing and Sanitization

Before applying any DP techniques, it’s essential to preprocess and sanitize the data. This involves removing or masking any direct identifiers and ensuring that the data is in a format suitable for DP applications.

Step 2: Sensitivity Analysis

Determine the sensitivity of the queries or algorithms you plan to use. This involves calculating the maximum possible change that a single individual’s data can cause in the output. Accurate sensitivity analysis is crucial for calibrating the amount of noise needed to preserve privacy.

Step 3: Choose a Noise Addition Mechanism

Select an appropriate noise addition mechanism based on the type of query and the desired level of privacy. The Laplace mechanism is suitable for queries with bounded sensitivity, while the Gaussian mechanism might be more appropriate for complex compositions.

  • Calibrate Noise: Adjust the amount of noise based on the sensitivity and the privacy budget.
  • Apply the Mechanism: Add the noise to the query results to ensure differential privacy.
  • Verify Privacy: Confirm that the chosen parameters meet the specified privacy guarantees.

By following these structured steps, AI researchers in the US can successfully implement differential privacy in their projects, ensuring that sensitive data is protected while valuable insights are still gleaned from the data.

Tools and Libraries for Differential Privacy

Several tools and libraries are available to facilitate the implementation of differential privacy. These resources can help AI researchers in the US integrate DP techniques into their projects more efficiently.

Google’s Differential Privacy Library

Google offers an open-source Differential Privacy library designed to make it easier for developers to implement DP in their applications. It provides tools for calculating privacy budgets, adding noise, and performing various DP operations.

Microsoft’s SmartNoise

SmartNoise is another open-source project that provides a comprehensive toolkit for implementing differential privacy. It includes tools for data preprocessing, sensitivity analysis, and noise addition, making it easier to build privacy-preserving applications.

OpenDP

The Open Differential Privacy (OpenDP) initiative aims to create a trusted, open-source software ecosystem for differential privacy. It provides a platform for developing and sharing DP tools and techniques.

  • Python DP Libraries: Libraries like PyDP offer implementations of DP mechanisms in Python.
  • R DP Packages: Packages like diffpriv provide functions for adding differential privacy to R-based analyses.
  • Specialized Tools: Tools tailored for specific tasks like DP-SGD (Differentially Private Stochastic Gradient Descent) are available.

By leveraging these tools and libraries, AI researchers in the US can accelerate the adoption of differential privacy in their projects, ensuring that data privacy is a key consideration in AI development. These resources provide practical support for implementing DP, making it more accessible to researchers across various domains.

Challenges and Considerations in Differential Privacy

While differential privacy offers strong privacy guarantees, it’s not without its challenges. AI researchers in the US need to be aware of these considerations to effectively implement DP in their projects.

Balancing Privacy and Utility

One of the main challenges in differential privacy is balancing the level of privacy protection with the utility of the data. Adding too much noise can protect privacy but also significantly reduce the accuracy and usefulness of the data.

Composition Theorems

Understanding composition theorems is crucial when performing multiple queries on the same dataset. Each query consumes a portion of the privacy budget (epsilon and delta), and the total privacy loss accumulates over multiple queries. Carefully managing the privacy budget is essential to maintain strong privacy guarantees.

Implementation Complexity

Implementing differential privacy can be complex, requiring a deep understanding of both the mathematical foundations and the practical aspects of noise addition. It’s important to have the right expertise and tools to ensure that DP is implemented correctly.

  • Accurate Sensitivity: Incorrect sensitivity calculations can lead to insufficient or excessive noise.
  • Budget Management: Overspending the privacy budget can compromise privacy guarantees.
  • Utility Preservation: Striking the right balance between privacy and data utility is essential.

By recognizing these challenges and considerations, AI researchers in the US can approach the implementation of differential privacy with a realistic perspective. This awareness allows for more effective planning and execution, ensuring that DP is applied in a way that maximizes both privacy protection and data utility.

Future Trends in Differential Privacy for AI

The field of differential privacy is constantly evolving, with new techniques and applications emerging regularly. AI researchers in the US should stay informed about these trends to leverage the latest advancements in DP.

Advancements in Noise Addition Mechanisms

Researchers are continually developing new noise addition mechanisms that offer better privacy-utility trade-offs. These mechanisms aim to provide stronger privacy guarantees while minimizing the impact on data accuracy.

Differential Privacy in Federated Learning

Federated learning, where AI models are trained on decentralized data sources, is becoming increasingly popular. Integrating differential privacy into federated learning frameworks can provide strong privacy guarantees for the data shared by individual participants.

Applications in Healthcare and Finance

Differential privacy is finding increasing applications in sensitive sectors such as healthcare and finance. In healthcare, DP can enable the sharing of medical data for research purposes while protecting patient privacy. In finance, DP can be used to analyze transaction data without revealing individual financial information.

  • Automated DP Tools: Developing automated tools to simplify the implementation of DP.
  • Scalable DP Solutions: Creating DP solutions that can handle large datasets efficiently.
  • Enhanced Privacy Metrics: Refining privacy metrics to better quantify and manage privacy risks.

By staying abreast of these future trends, AI researchers in the US can position themselves at the forefront of privacy-preserving AI development. These advancements promise to make DP more accessible, efficient, and effective, paving the way for more widespread adoption across various industries.

Key Concept Brief Description
🛡️ Differential Privacy Ensures individual data points’ addition/removal doesn’t significantly alter analysis outcomes.
📊 Epsilon (ε) & Delta (δ) Epsilon represents privacy loss, delta the failure risk of DP guarantees. Lower epsilon means stronger privacy.
⚙️ Noise Addition Adding calibrated noise is a key technique using Laplace or Gaussian mechanisms to obscure individual data contributions.
⚖️ Privacy Budget Managing a privacy budget is critical, especially when performing multiple queries to avoid cumulative privacy loss.

Frequently Asked Questions (FAQ)

What is the main goal of differential privacy?

The main goal is to protect the privacy of individual data points within a dataset while still allowing useful information to be extracted for analysis. It ensures that the contribution of any single individual is obscured.

How does epsilon (ε) relate to data privacy?

Epsilon represents the privacy loss parameter. A smaller epsilon value indicates a stronger privacy guarantee, meaning that the privacy of individuals in the dataset is better protected from being revealed through data analysis.

What are some real-world applications of differential privacy?

Differential privacy is used in healthcare to share patient data for research, in finance to analyze transaction data, and in government to release census data. It is also used in AI to train models on sensitive data.

What are the basic steps to implement differential privacy?

The steps include preprocessing data, analyzing sensitivity, choosing a noise addition mechanism, calibrating noise based on sensitivity and the privacy budget, and then applying the chosen mechanism. Proper management of the privacy budget is also crucial.

What tools can aid in implementing differential privacy?

Tools include Google’s Differential Privacy library, Microsoft’s SmartNoise, and the Open Differential Privacy (OpenDP) initiative. Various Python and R packages like PyDP and diffpriv are also available to help.

Conclusion

Implementing differential privacy in AI research is not just a technical necessity but an ethical imperative in the US. By understanding the key concepts, following the implementation steps, and leveraging available tools, AI researchers can protect sensitive data while still advancing the field. As data privacy regulations continue to evolve, adopting DP will be crucial for responsible AI development.

Emilly Correa

Emilly Correa has a degree in journalism and a postgraduate degree in Digital Marketing, specializing in Content Production for Social Media. With experience in copywriting and blog management, she combines her passion for writing with digital engagement strategies. She has worked in communications agencies and now dedicates herself to producing informative articles and trend analyses.

<!doctype html> <html lang="en-US"> <head> <link rel='preload' as='script' href='https://securepubads.g.doubleclick.net/tag/js/gpt.js' /> <!-- wrapper --> <!-- wrapper --> <meta charset="UTF-8" /> <title>Differential Privacy in AI Research: A US Guide to Protect Data - ARTIFICIAL INTELLIGENCE SOLUTIONSS</title> <meta http-equiv="X-UA-Compatible" content="IE=Edge"> <meta name="viewport" content="width=device-width, initial-scale=1"> <!-- search console verification --> <!-- search console verification --> <meta name="author" content="Emilly Correa"> <link rel="icon" href="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css2?family=PT+Sans:wght@400;700&display=swap" rel="stylesheet"> <link rel="stylesheet" media="all" href="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/css/bootstrap.min.css?ver=1753802936"> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/swiper@10/swiper-bundle.min.css" /> <!-- jQuery (necessário para Bootstrap 4 ou inferior) --> <script src="https://code.jquery.com/jquery-3.6.0.min.js"></script> <!-- Bootstrap JS (versão compatível com seu CSS atual) --> <script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"></script> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css"> <meta name='robots' content='index, follow, max-image-preview:large, max-snippet:-1, max-video-preview:-1' /> <style>img:is([sizes="auto" i], [sizes^="auto," i]) { contain-intrinsic-size: 3000px 1500px }</style> <!-- This site is optimized with the Yoast SEO plugin v25.6 - https://yoast.com/wordpress/plugins/seo/ --> <link rel="canonical" href="https://artificialintelligencesolutionss.com/differential-privacy-in-ai-research-a-us-guide-to-protect-data/" /> <meta property="og:locale" content="en_US" /> <meta property="og:type" content="article" /> <meta property="og:title" content="Differential Privacy in AI Research: A US Guide to Protect Data - ARTIFICIAL INTELLIGENCE SOLUTIONSS" /> <meta property="og:description" content="Implementing differential privacy in AI research is crucial for protecting sensitive data, especially in the US, ensuring compliance with privacy regulations while still enabling valuable insights from the data. In the United States, the importance of protecting sensitive data in Artificial Intelligence (AI) research cannot be overstated. This article serves as a comprehensive guide on [&hellip;]" /> <meta property="og:url" content="https://artificialintelligencesolutionss.com/differential-privacy-in-ai-research-a-us-guide-to-protect-data/" /> <meta property="og:site_name" content="ARTIFICIAL INTELLIGENCE SOLUTIONSS" /> <meta property="article:published_time" content="2025-02-20T12:20:00+00:00" /> <meta property="article:modified_time" content="2025-08-01T17:35:10+00:00" /> <meta property="og:image" content="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774360_f5ec3580_cover.jpg" /> <meta property="og:image:width" content="626" /> <meta property="og:image:height" content="626" /> <meta property="og:image:type" content="image/jpeg" /> <meta name="author" content="Emilly Correa" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:label1" content="Written by" /> <meta name="twitter:data1" content="Emilly Correa" /> <meta name="twitter:label2" content="Est. reading time" /> <meta name="twitter:data2" content="9 minutes" /> <script type="application/ld+json" class="yoast-schema-graph">{"@context":"https://schema.org","@graph":[{"@type":"WebPage","@id":"https://artificialintelligencesolutionss.com/differential-privacy-in-ai-research-a-us-guide-to-protect-data/","url":"https://artificialintelligencesolutionss.com/differential-privacy-in-ai-research-a-us-guide-to-protect-data/","name":"Differential Privacy in AI Research: A US Guide to Protect Data - ARTIFICIAL INTELLIGENCE SOLUTIONSS","isPartOf":{"@id":"https://artificialintelligencesolutionss.com/#website"},"primaryImageOfPage":{"@id":"https://artificialintelligencesolutionss.com/differential-privacy-in-ai-research-a-us-guide-to-protect-data/#primaryimage"},"image":{"@id":"https://artificialintelligencesolutionss.com/differential-privacy-in-ai-research-a-us-guide-to-protect-data/#primaryimage"},"thumbnailUrl":"https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774360_f5ec3580_cover.jpg","datePublished":"2025-02-20T12:20:00+00:00","dateModified":"2025-08-01T17:35:10+00:00","author":{"@id":"https://artificialintelligencesolutionss.com/#/schema/person/bb1a858770181f28b75df4752addef77"},"breadcrumb":{"@id":"https://artificialintelligencesolutionss.com/differential-privacy-in-ai-research-a-us-guide-to-protect-data/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https://artificialintelligencesolutionss.com/differential-privacy-in-ai-research-a-us-guide-to-protect-data/"]}]},{"@type":"ImageObject","inLanguage":"en-US","@id":"https://artificialintelligencesolutionss.com/differential-privacy-in-ai-research-a-us-guide-to-protect-data/#primaryimage","url":"https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774360_f5ec3580_cover.jpg","contentUrl":"https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774360_f5ec3580_cover.jpg","width":626,"height":626,"caption":"Differential Privacy in AI Research: A US Guide to Protect Data - Cover Image"},{"@type":"BreadcrumbList","@id":"https://artificialintelligencesolutionss.com/differential-privacy-in-ai-research-a-us-guide-to-protect-data/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Início","item":"https://artificialintelligencesolutionss.com/"},{"@type":"ListItem","position":2,"name":"Differential Privacy in AI Research: A US Guide to Protect Data"}]},{"@type":"WebSite","@id":"https://artificialintelligencesolutionss.com/#website","url":"https://artificialintelligencesolutionss.com/","name":"ARTIFICIALINTELLIGENCESOLUTIONSS.COM @ DATA2","description":"","potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https://artificialintelligencesolutionss.com/?s={search_term_string}"},"query-input":{"@type":"PropertyValueSpecification","valueRequired":true,"valueName":"search_term_string"}}],"inLanguage":"en-US"},{"@type":"Person","@id":"https://artificialintelligencesolutionss.com/#/schema/person/bb1a858770181f28b75df4752addef77","name":"Emilly Correa","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https://artificialintelligencesolutionss.com/#/schema/person/image/","url":"https://secure.gravatar.com/avatar/0c41178f1747957ea608c344f8b50b0c200f2e5fd06488356d8e998ef2c263ec?s=96&d=mm&r=g","contentUrl":"https://secure.gravatar.com/avatar/0c41178f1747957ea608c344f8b50b0c200f2e5fd06488356d8e998ef2c263ec?s=96&d=mm&r=g","caption":"Emilly Correa"},"description":"Emilly Correa has a degree in journalism and a postgraduate degree in Digital Marketing, specializing in Content Production for Social Media. With experience in copywriting and blog management, she combines her passion for writing with digital engagement strategies. She has worked in communications agencies and now dedicates herself to producing informative articles and trend analyses.","url":"https://artificialintelligencesolutionss.com/author/emilly/"}]}</script> <!-- / Yoast SEO plugin. --> <link rel='dns-prefetch' href='//fonts.googleapis.com' /> <link rel="alternate" type="application/rss+xml" title="ARTIFICIAL INTELLIGENCE SOLUTIONSS &raquo; Differential Privacy in AI Research: A US Guide to Protect Data Comments Feed" href="https://artificialintelligencesolutionss.com/differential-privacy-in-ai-research-a-us-guide-to-protect-data/feed/" /> <script type="text/javascript"> /* <![CDATA[ */ window._wpemojiSettings = {"baseUrl":"https:\/\/s.w.org\/images\/core\/emoji\/16.0.1\/72x72\/","ext":".png","svgUrl":"https:\/\/s.w.org\/images\/core\/emoji\/16.0.1\/svg\/","svgExt":".svg","source":{"concatemoji":"https:\/\/artificialintelligencesolutionss.com\/wp-includes\/js\/wp-emoji-release.min.js?ver=6.8.3"}}; /*! This file is auto-generated */ !function(s,n){var o,i,e;function c(e){try{var t={supportTests:e,timestamp:(new Date).valueOf()};sessionStorage.setItem(o,JSON.stringify(t))}catch(e){}}function p(e,t,n){e.clearRect(0,0,e.canvas.width,e.canvas.height),e.fillText(t,0,0);var t=new Uint32Array(e.getImageData(0,0,e.canvas.width,e.canvas.height).data),a=(e.clearRect(0,0,e.canvas.width,e.canvas.height),e.fillText(n,0,0),new Uint32Array(e.getImageData(0,0,e.canvas.width,e.canvas.height).data));return t.every(function(e,t){return e===a[t]})}function u(e,t){e.clearRect(0,0,e.canvas.width,e.canvas.height),e.fillText(t,0,0);for(var n=e.getImageData(16,16,1,1),a=0;a<n.data.length;a++)if(0!==n.data[a])return!1;return!0}function f(e,t,n,a){switch(t){case"flag":return n(e,"\ud83c\udff3\ufe0f\u200d\u26a7\ufe0f","\ud83c\udff3\ufe0f\u200b\u26a7\ufe0f")?!1:!n(e,"\ud83c\udde8\ud83c\uddf6","\ud83c\udde8\u200b\ud83c\uddf6")&&!n(e,"\ud83c\udff4\udb40\udc67\udb40\udc62\udb40\udc65\udb40\udc6e\udb40\udc67\udb40\udc7f","\ud83c\udff4\u200b\udb40\udc67\u200b\udb40\udc62\u200b\udb40\udc65\u200b\udb40\udc6e\u200b\udb40\udc67\u200b\udb40\udc7f");case"emoji":return!a(e,"\ud83e\udedf")}return!1}function g(e,t,n,a){var r="undefined"!=typeof WorkerGlobalScope&&self instanceof WorkerGlobalScope?new OffscreenCanvas(300,150):s.createElement("canvas"),o=r.getContext("2d",{willReadFrequently:!0}),i=(o.textBaseline="top",o.font="600 32px Arial",{});return e.forEach(function(e){i[e]=t(o,e,n,a)}),i}function t(e){var t=s.createElement("script");t.src=e,t.defer=!0,s.head.appendChild(t)}"undefined"!=typeof Promise&&(o="wpEmojiSettingsSupports",i=["flag","emoji"],n.supports={everything:!0,everythingExceptFlag:!0},e=new Promise(function(e){s.addEventListener("DOMContentLoaded",e,{once:!0})}),new Promise(function(t){var n=function(){try{var e=JSON.parse(sessionStorage.getItem(o));if("object"==typeof e&&"number"==typeof e.timestamp&&(new Date).valueOf()<e.timestamp+604800&&"object"==typeof e.supportTests)return e.supportTests}catch(e){}return null}();if(!n){if("undefined"!=typeof Worker&&"undefined"!=typeof OffscreenCanvas&&"undefined"!=typeof URL&&URL.createObjectURL&&"undefined"!=typeof Blob)try{var e="postMessage("+g.toString()+"("+[JSON.stringify(i),f.toString(),p.toString(),u.toString()].join(",")+"));",a=new Blob([e],{type:"text/javascript"}),r=new Worker(URL.createObjectURL(a),{name:"wpTestEmojiSupports"});return void(r.onmessage=function(e){c(n=e.data),r.terminate(),t(n)})}catch(e){}c(n=g(i,f,p,u))}t(n)}).then(function(e){for(var t in e)n.supports[t]=e[t],n.supports.everything=n.supports.everything&&n.supports[t],"flag"!==t&&(n.supports.everythingExceptFlag=n.supports.everythingExceptFlag&&n.supports[t]);n.supports.everythingExceptFlag=n.supports.everythingExceptFlag&&!n.supports.flag,n.DOMReady=!1,n.readyCallback=function(){n.DOMReady=!0}}).then(function(){return e}).then(function(){var e;n.supports.everything||(n.readyCallback(),(e=n.source||{}).concatemoji?t(e.concatemoji):e.wpemoji&&e.twemoji&&(t(e.twemoji),t(e.wpemoji)))}))}((window,document),window._wpemojiSettings); /* ]]> */ </script> <link rel='stylesheet' id='google-font-css' href='https://fonts.googleapis.com/css2?family=PT+Sans:wght@400;700&#038;display=swap' type='text/css' media='all' /> <style id='wp-emoji-styles-inline-css' type='text/css'> img.wp-smiley, img.emoji { display: inline !important; border: none !important; box-shadow: none !important; height: 1em !important; width: 1em !important; margin: 0 0.07em !important; vertical-align: -0.1em !important; background: none !important; padding: 0 !important; } </style> <link rel='stylesheet' id='wp-block-library-css' href='https://artificialintelligencesolutionss.com/wp-includes/css/dist/block-library/style.min.css?ver=6.8.3' type='text/css' media='all' /> <style id='classic-theme-styles-inline-css' type='text/css'> /*! This file is auto-generated */ .wp-block-button__link{color:#fff;background-color:#32373c;border-radius:9999px;box-shadow:none;text-decoration:none;padding:calc(.667em + 2px) calc(1.333em + 2px);font-size:1.125em}.wp-block-file__button{background:#32373c;color:#fff;text-decoration:none} </style> <style id='global-styles-inline-css' type='text/css'> :root{--wp--preset--aspect-ratio--square: 1;--wp--preset--aspect-ratio--4-3: 4/3;--wp--preset--aspect-ratio--3-4: 3/4;--wp--preset--aspect-ratio--3-2: 3/2;--wp--preset--aspect-ratio--2-3: 2/3;--wp--preset--aspect-ratio--16-9: 16/9;--wp--preset--aspect-ratio--9-16: 9/16;--wp--preset--color--black: #000000;--wp--preset--color--cyan-bluish-gray: #abb8c3;--wp--preset--color--white: #ffffff;--wp--preset--color--pale-pink: #f78da7;--wp--preset--color--vivid-red: #cf2e2e;--wp--preset--color--luminous-vivid-orange: #ff6900;--wp--preset--color--luminous-vivid-amber: #fcb900;--wp--preset--color--light-green-cyan: #7bdcb5;--wp--preset--color--vivid-green-cyan: #00d084;--wp--preset--color--pale-cyan-blue: #8ed1fc;--wp--preset--color--vivid-cyan-blue: #0693e3;--wp--preset--color--vivid-purple: #9b51e0;--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple: linear-gradient(135deg,rgba(6,147,227,1) 0%,rgb(155,81,224) 100%);--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan: linear-gradient(135deg,rgb(122,220,180) 0%,rgb(0,208,130) 100%);--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange: linear-gradient(135deg,rgba(252,185,0,1) 0%,rgba(255,105,0,1) 100%);--wp--preset--gradient--luminous-vivid-orange-to-vivid-red: linear-gradient(135deg,rgba(255,105,0,1) 0%,rgb(207,46,46) 100%);--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray: linear-gradient(135deg,rgb(238,238,238) 0%,rgb(169,184,195) 100%);--wp--preset--gradient--cool-to-warm-spectrum: linear-gradient(135deg,rgb(74,234,220) 0%,rgb(151,120,209) 20%,rgb(207,42,186) 40%,rgb(238,44,130) 60%,rgb(251,105,98) 80%,rgb(254,248,76) 100%);--wp--preset--gradient--blush-light-purple: linear-gradient(135deg,rgb(255,206,236) 0%,rgb(152,150,240) 100%);--wp--preset--gradient--blush-bordeaux: linear-gradient(135deg,rgb(254,205,165) 0%,rgb(254,45,45) 50%,rgb(107,0,62) 100%);--wp--preset--gradient--luminous-dusk: linear-gradient(135deg,rgb(255,203,112) 0%,rgb(199,81,192) 50%,rgb(65,88,208) 100%);--wp--preset--gradient--pale-ocean: linear-gradient(135deg,rgb(255,245,203) 0%,rgb(182,227,212) 50%,rgb(51,167,181) 100%);--wp--preset--gradient--electric-grass: linear-gradient(135deg,rgb(202,248,128) 0%,rgb(113,206,126) 100%);--wp--preset--gradient--midnight: linear-gradient(135deg,rgb(2,3,129) 0%,rgb(40,116,252) 100%);--wp--preset--font-size--small: 13px;--wp--preset--font-size--medium: 20px;--wp--preset--font-size--large: 36px;--wp--preset--font-size--x-large: 42px;--wp--preset--spacing--20: 0.44rem;--wp--preset--spacing--30: 0.67rem;--wp--preset--spacing--40: 1rem;--wp--preset--spacing--50: 1.5rem;--wp--preset--spacing--60: 2.25rem;--wp--preset--spacing--70: 3.38rem;--wp--preset--spacing--80: 5.06rem;--wp--preset--shadow--natural: 6px 6px 9px rgba(0, 0, 0, 0.2);--wp--preset--shadow--deep: 12px 12px 50px rgba(0, 0, 0, 0.4);--wp--preset--shadow--sharp: 6px 6px 0px rgba(0, 0, 0, 0.2);--wp--preset--shadow--outlined: 6px 6px 0px -3px rgba(255, 255, 255, 1), 6px 6px rgba(0, 0, 0, 1);--wp--preset--shadow--crisp: 6px 6px 0px rgba(0, 0, 0, 1);}:where(.is-layout-flex){gap: 0.5em;}:where(.is-layout-grid){gap: 0.5em;}body .is-layout-flex{display: flex;}.is-layout-flex{flex-wrap: wrap;align-items: center;}.is-layout-flex > :is(*, div){margin: 0;}body .is-layout-grid{display: grid;}.is-layout-grid > :is(*, div){margin: 0;}:where(.wp-block-columns.is-layout-flex){gap: 2em;}:where(.wp-block-columns.is-layout-grid){gap: 2em;}:where(.wp-block-post-template.is-layout-flex){gap: 1.25em;}:where(.wp-block-post-template.is-layout-grid){gap: 1.25em;}.has-black-color{color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-color{color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-color{color: var(--wp--preset--color--white) !important;}.has-pale-pink-color{color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-color{color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-color{color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-color{color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-color{color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-color{color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-color{color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-color{color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-color{color: var(--wp--preset--color--vivid-purple) !important;}.has-black-background-color{background-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-background-color{background-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-background-color{background-color: var(--wp--preset--color--white) !important;}.has-pale-pink-background-color{background-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-background-color{background-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-background-color{background-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-background-color{background-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-background-color{background-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-background-color{background-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-background-color{background-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-background-color{background-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-background-color{background-color: var(--wp--preset--color--vivid-purple) !important;}.has-black-border-color{border-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-border-color{border-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-border-color{border-color: var(--wp--preset--color--white) !important;}.has-pale-pink-border-color{border-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-border-color{border-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-border-color{border-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-border-color{border-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-border-color{border-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-border-color{border-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-border-color{border-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-border-color{border-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-border-color{border-color: var(--wp--preset--color--vivid-purple) !important;}.has-vivid-cyan-blue-to-vivid-purple-gradient-background{background: var(--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple) !important;}.has-light-green-cyan-to-vivid-green-cyan-gradient-background{background: var(--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan) !important;}.has-luminous-vivid-amber-to-luminous-vivid-orange-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange) !important;}.has-luminous-vivid-orange-to-vivid-red-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-orange-to-vivid-red) !important;}.has-very-light-gray-to-cyan-bluish-gray-gradient-background{background: var(--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray) !important;}.has-cool-to-warm-spectrum-gradient-background{background: var(--wp--preset--gradient--cool-to-warm-spectrum) !important;}.has-blush-light-purple-gradient-background{background: var(--wp--preset--gradient--blush-light-purple) !important;}.has-blush-bordeaux-gradient-background{background: var(--wp--preset--gradient--blush-bordeaux) !important;}.has-luminous-dusk-gradient-background{background: var(--wp--preset--gradient--luminous-dusk) !important;}.has-pale-ocean-gradient-background{background: var(--wp--preset--gradient--pale-ocean) !important;}.has-electric-grass-gradient-background{background: var(--wp--preset--gradient--electric-grass) !important;}.has-midnight-gradient-background{background: var(--wp--preset--gradient--midnight) !important;}.has-small-font-size{font-size: var(--wp--preset--font-size--small) !important;}.has-medium-font-size{font-size: var(--wp--preset--font-size--medium) !important;}.has-large-font-size{font-size: var(--wp--preset--font-size--large) !important;}.has-x-large-font-size{font-size: var(--wp--preset--font-size--x-large) !important;} :where(.wp-block-post-template.is-layout-flex){gap: 1.25em;}:where(.wp-block-post-template.is-layout-grid){gap: 1.25em;} :where(.wp-block-columns.is-layout-flex){gap: 2em;}:where(.wp-block-columns.is-layout-grid){gap: 2em;} :root :where(.wp-block-pullquote){font-size: 1.5em;line-height: 1.6;} </style> <link rel='stylesheet' id='ddmp-author-box-styles-css' href='https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/css/author-box.css?ver=1753735005' type='text/css' media='all' /> <link rel='stylesheet' id='styles-css' href='https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/style.css?ver=1753802936' type='text/css' media='all' /> <style id='styles-inline-css' type='text/css'> :root { --font-family: 'PT Sans'; } </style> <link rel='stylesheet' id='font-override-css' href='https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/css/font-override.css?ver=1753802936' type='text/css' media='all' /> <link rel='stylesheet' id='header-styles-css' href='https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/css/header-styles.css?ver=1753802936' type='text/css' media='all' /> <script type="text/javascript" id="cookie-law-info-js-extra"> /* <![CDATA[ */ var _ckyConfig = {"_ipData":[],"_assetsURL":"https:\/\/artificialintelligencesolutionss.com\/wp-content\/plugins\/cookie-law-info\/lite\/frontend\/images\/","_publicURL":"https:\/\/artificialintelligencesolutionss.com","_expiry":"365","_categories":[{"name":"Necessary","slug":"necessary","isNecessary":true,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":true,"ccpa":true}},{"name":"Functional","slug":"functional","isNecessary":false,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":false,"ccpa":false}},{"name":"Analytics","slug":"analytics","isNecessary":false,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":false,"ccpa":false}},{"name":"Performance","slug":"performance","isNecessary":false,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":false,"ccpa":false}},{"name":"Advertisement","slug":"advertisement","isNecessary":false,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":false,"ccpa":false}}],"_activeLaw":"gdpr","_rootDomain":"","_block":"1","_showBanner":"1","_bannerConfig":{"settings":{"type":"box","preferenceCenterType":"popup","position":"bottom-left","applicableLaw":"gdpr"},"behaviours":{"reloadBannerOnAccept":false,"loadAnalyticsByDefault":false,"animations":{"onLoad":"animate","onHide":"sticky"}},"config":{"revisitConsent":{"status":true,"tag":"revisit-consent","position":"bottom-left","meta":{"url":"#"},"styles":{"background-color":"#0056A7"},"elements":{"title":{"type":"text","tag":"revisit-consent-title","status":true,"styles":{"color":"#0056a7"}}}},"preferenceCenter":{"toggle":{"status":true,"tag":"detail-category-toggle","type":"toggle","states":{"active":{"styles":{"background-color":"#1863DC"}},"inactive":{"styles":{"background-color":"#D0D5D2"}}}}},"categoryPreview":{"status":false,"toggle":{"status":true,"tag":"detail-category-preview-toggle","type":"toggle","states":{"active":{"styles":{"background-color":"#1863DC"}},"inactive":{"styles":{"background-color":"#D0D5D2"}}}}},"videoPlaceholder":{"status":true,"styles":{"background-color":"#000000","border-color":"#000000","color":"#ffffff"}},"readMore":{"status":false,"tag":"readmore-button","type":"link","meta":{"noFollow":true,"newTab":true},"styles":{"color":"#1863DC","background-color":"transparent","border-color":"transparent"}},"auditTable":{"status":true},"optOption":{"status":true,"toggle":{"status":true,"tag":"optout-option-toggle","type":"toggle","states":{"active":{"styles":{"background-color":"#1863dc"}},"inactive":{"styles":{"background-color":"#FFFFFF"}}}}}}},"_version":"3.3.1","_logConsent":"1","_tags":[{"tag":"accept-button","styles":{"color":"#FFFFFF","background-color":"#1863DC","border-color":"#1863DC"}},{"tag":"reject-button","styles":{"color":"#1863DC","background-color":"transparent","border-color":"#1863DC"}},{"tag":"settings-button","styles":{"color":"#1863DC","background-color":"transparent","border-color":"#1863DC"}},{"tag":"readmore-button","styles":{"color":"#1863DC","background-color":"transparent","border-color":"transparent"}},{"tag":"donotsell-button","styles":{"color":"#1863DC","background-color":"transparent","border-color":"transparent"}},{"tag":"accept-button","styles":{"color":"#FFFFFF","background-color":"#1863DC","border-color":"#1863DC"}},{"tag":"revisit-consent","styles":{"background-color":"#0056A7"}}],"_shortCodes":[{"key":"cky_readmore","content":"<a href=\"#\" class=\"cky-policy\" aria-label=\"Cookie Policy\" target=\"_blank\" rel=\"noopener\" data-cky-tag=\"readmore-button\">Cookie Policy<\/a>","tag":"readmore-button","status":false,"attributes":{"rel":"nofollow","target":"_blank"}},{"key":"cky_show_desc","content":"<button class=\"cky-show-desc-btn\" data-cky-tag=\"show-desc-button\" aria-label=\"Show more\">Show more<\/button>","tag":"show-desc-button","status":true,"attributes":[]},{"key":"cky_hide_desc","content":"<button class=\"cky-show-desc-btn\" data-cky-tag=\"hide-desc-button\" aria-label=\"Show less\">Show less<\/button>","tag":"hide-desc-button","status":true,"attributes":[]},{"key":"cky_category_toggle_label","content":"[cky_{{status}}_category_label] [cky_preference_{{category_slug}}_title]","tag":"","status":true,"attributes":[]},{"key":"cky_enable_category_label","content":"Enable","tag":"","status":true,"attributes":[]},{"key":"cky_disable_category_label","content":"Disable","tag":"","status":true,"attributes":[]},{"key":"cky_video_placeholder","content":"<div class=\"video-placeholder-normal\" data-cky-tag=\"video-placeholder\" id=\"[UNIQUEID]\"><p class=\"video-placeholder-text-normal\" data-cky-tag=\"placeholder-title\">Please accept cookies to access this content<\/p><\/div>","tag":"","status":true,"attributes":[]},{"key":"cky_enable_optout_label","content":"Enable","tag":"","status":true,"attributes":[]},{"key":"cky_disable_optout_label","content":"Disable","tag":"","status":true,"attributes":[]},{"key":"cky_optout_toggle_label","content":"[cky_{{status}}_optout_label] [cky_optout_option_title]","tag":"","status":true,"attributes":[]},{"key":"cky_optout_option_title","content":"Do Not Sell or Share My Personal Information","tag":"","status":true,"attributes":[]},{"key":"cky_optout_close_label","content":"Close","tag":"","status":true,"attributes":[]},{"key":"cky_preference_close_label","content":"Close","tag":"","status":true,"attributes":[]}],"_rtl":"","_language":"en","_providersToBlock":[]}; var _ckyStyles = {"css":".cky-overlay{background: #000000; opacity: 0.4; position: fixed; top: 0; left: 0; width: 100%; height: 100%; z-index: 99999999;}.cky-hide{display: none;}.cky-btn-revisit-wrapper{display: flex; align-items: center; justify-content: center; background: #0056a7; width: 45px; height: 45px; border-radius: 50%; position: fixed; z-index: 999999; cursor: pointer;}.cky-revisit-bottom-left{bottom: 15px; left: 15px;}.cky-revisit-bottom-right{bottom: 15px; right: 15px;}.cky-btn-revisit-wrapper .cky-btn-revisit{display: flex; align-items: center; justify-content: center; background: none; border: none; cursor: pointer; position: relative; margin: 0; padding: 0;}.cky-btn-revisit-wrapper .cky-btn-revisit img{max-width: fit-content; margin: 0; height: 30px; width: 30px;}.cky-revisit-bottom-left:hover::before{content: attr(data-tooltip); position: absolute; background: #4e4b66; color: #ffffff; left: calc(100% + 7px); font-size: 12px; line-height: 16px; width: max-content; padding: 4px 8px; border-radius: 4px;}.cky-revisit-bottom-left:hover::after{position: absolute; content: \"\"; border: 5px solid transparent; left: calc(100% + 2px); border-left-width: 0; border-right-color: #4e4b66;}.cky-revisit-bottom-right:hover::before{content: attr(data-tooltip); position: absolute; background: #4e4b66; color: #ffffff; right: calc(100% + 7px); font-size: 12px; line-height: 16px; width: max-content; padding: 4px 8px; border-radius: 4px;}.cky-revisit-bottom-right:hover::after{position: absolute; content: \"\"; border: 5px solid transparent; right: calc(100% + 2px); border-right-width: 0; border-left-color: #4e4b66;}.cky-revisit-hide{display: none;}.cky-consent-container{position: fixed; width: 440px; box-sizing: border-box; z-index: 9999999; border-radius: 6px;}.cky-consent-container .cky-consent-bar{background: #ffffff; border: 1px solid; padding: 20px 26px; box-shadow: 0 -1px 10px 0 #acabab4d; border-radius: 6px;}.cky-box-bottom-left{bottom: 40px; left: 40px;}.cky-box-bottom-right{bottom: 40px; right: 40px;}.cky-box-top-left{top: 40px; left: 40px;}.cky-box-top-right{top: 40px; right: 40px;}.cky-custom-brand-logo-wrapper .cky-custom-brand-logo{width: 100px; height: auto; margin: 0 0 12px 0;}.cky-notice .cky-title{color: #212121; font-weight: 700; font-size: 18px; line-height: 24px; margin: 0 0 12px 0;}.cky-notice-des *,.cky-preference-content-wrapper *,.cky-accordion-header-des *,.cky-gpc-wrapper .cky-gpc-desc *{font-size: 14px;}.cky-notice-des{color: #212121; font-size: 14px; line-height: 24px; font-weight: 400;}.cky-notice-des img{height: 25px; width: 25px;}.cky-consent-bar .cky-notice-des p,.cky-gpc-wrapper .cky-gpc-desc p,.cky-preference-body-wrapper .cky-preference-content-wrapper p,.cky-accordion-header-wrapper .cky-accordion-header-des p,.cky-cookie-des-table li div:last-child p{color: inherit; margin-top: 0; overflow-wrap: break-word;}.cky-notice-des P:last-child,.cky-preference-content-wrapper p:last-child,.cky-cookie-des-table li div:last-child p:last-child,.cky-gpc-wrapper .cky-gpc-desc p:last-child{margin-bottom: 0;}.cky-notice-des a.cky-policy,.cky-notice-des button.cky-policy{font-size: 14px; color: #1863dc; white-space: nowrap; cursor: pointer; background: transparent; border: 1px solid; text-decoration: underline;}.cky-notice-des button.cky-policy{padding: 0;}.cky-notice-des a.cky-policy:focus-visible,.cky-notice-des button.cky-policy:focus-visible,.cky-preference-content-wrapper .cky-show-desc-btn:focus-visible,.cky-accordion-header .cky-accordion-btn:focus-visible,.cky-preference-header .cky-btn-close:focus-visible,.cky-switch input[type=\"checkbox\"]:focus-visible,.cky-footer-wrapper a:focus-visible,.cky-btn:focus-visible{outline: 2px solid #1863dc; outline-offset: 2px;}.cky-btn:focus:not(:focus-visible),.cky-accordion-header .cky-accordion-btn:focus:not(:focus-visible),.cky-preference-content-wrapper .cky-show-desc-btn:focus:not(:focus-visible),.cky-btn-revisit-wrapper .cky-btn-revisit:focus:not(:focus-visible),.cky-preference-header .cky-btn-close:focus:not(:focus-visible),.cky-consent-bar .cky-banner-btn-close:focus:not(:focus-visible){outline: 0;}button.cky-show-desc-btn:not(:hover):not(:active){color: #1863dc; background: transparent;}button.cky-accordion-btn:not(:hover):not(:active),button.cky-banner-btn-close:not(:hover):not(:active),button.cky-btn-revisit:not(:hover):not(:active),button.cky-btn-close:not(:hover):not(:active){background: transparent;}.cky-consent-bar button:hover,.cky-modal.cky-modal-open button:hover,.cky-consent-bar button:focus,.cky-modal.cky-modal-open button:focus{text-decoration: none;}.cky-notice-btn-wrapper{display: flex; justify-content: flex-start; align-items: center; flex-wrap: wrap; margin-top: 16px;}.cky-notice-btn-wrapper .cky-btn{text-shadow: none; box-shadow: none;}.cky-btn{flex: auto; max-width: 100%; font-size: 14px; font-family: inherit; line-height: 24px; padding: 8px; font-weight: 500; margin: 0 8px 0 0; border-radius: 2px; cursor: pointer; text-align: center; text-transform: none; min-height: 0;}.cky-btn:hover{opacity: 0.8;}.cky-btn-customize{color: #1863dc; background: transparent; border: 2px solid #1863dc;}.cky-btn-reject{color: #1863dc; background: transparent; border: 2px solid #1863dc;}.cky-btn-accept{background: #1863dc; color: #ffffff; border: 2px solid #1863dc;}.cky-btn:last-child{margin-right: 0;}@media (max-width: 576px){.cky-box-bottom-left{bottom: 0; left: 0;}.cky-box-bottom-right{bottom: 0; right: 0;}.cky-box-top-left{top: 0; left: 0;}.cky-box-top-right{top: 0; right: 0;}}@media (max-width: 440px){.cky-box-bottom-left, .cky-box-bottom-right, .cky-box-top-left, .cky-box-top-right{width: 100%; max-width: 100%;}.cky-consent-container .cky-consent-bar{padding: 20px 0;}.cky-custom-brand-logo-wrapper, .cky-notice .cky-title, .cky-notice-des, .cky-notice-btn-wrapper{padding: 0 24px;}.cky-notice-des{max-height: 40vh; overflow-y: scroll;}.cky-notice-btn-wrapper{flex-direction: column; margin-top: 0;}.cky-btn{width: 100%; margin: 10px 0 0 0;}.cky-notice-btn-wrapper .cky-btn-customize{order: 2;}.cky-notice-btn-wrapper .cky-btn-reject{order: 3;}.cky-notice-btn-wrapper .cky-btn-accept{order: 1; margin-top: 16px;}}@media (max-width: 352px){.cky-notice .cky-title{font-size: 16px;}.cky-notice-des *{font-size: 12px;}.cky-notice-des, .cky-btn{font-size: 12px;}}.cky-modal.cky-modal-open{display: flex; visibility: visible; -webkit-transform: translate(-50%, -50%); -moz-transform: translate(-50%, -50%); -ms-transform: translate(-50%, -50%); -o-transform: translate(-50%, -50%); transform: translate(-50%, -50%); top: 50%; left: 50%; transition: all 1s ease;}.cky-modal{box-shadow: 0 32px 68px rgba(0, 0, 0, 0.3); margin: 0 auto; position: fixed; max-width: 100%; background: #ffffff; top: 50%; box-sizing: border-box; border-radius: 6px; z-index: 999999999; color: #212121; -webkit-transform: translate(-50%, 100%); -moz-transform: translate(-50%, 100%); -ms-transform: translate(-50%, 100%); -o-transform: translate(-50%, 100%); transform: translate(-50%, 100%); visibility: hidden; transition: all 0s ease;}.cky-preference-center{max-height: 79vh; overflow: hidden; width: 845px; overflow: hidden; flex: 1 1 0; display: flex; flex-direction: column; border-radius: 6px;}.cky-preference-header{display: flex; align-items: center; justify-content: space-between; padding: 22px 24px; border-bottom: 1px solid;}.cky-preference-header .cky-preference-title{font-size: 18px; font-weight: 700; line-height: 24px;}.cky-preference-header .cky-btn-close{margin: 0; cursor: pointer; vertical-align: middle; padding: 0; background: none; border: none; width: auto; height: auto; min-height: 0; line-height: 0; text-shadow: none; box-shadow: none;}.cky-preference-header .cky-btn-close img{margin: 0; height: 10px; width: 10px;}.cky-preference-body-wrapper{padding: 0 24px; flex: 1; overflow: auto; box-sizing: border-box;}.cky-preference-content-wrapper,.cky-gpc-wrapper .cky-gpc-desc{font-size: 14px; line-height: 24px; font-weight: 400; padding: 12px 0;}.cky-preference-content-wrapper{border-bottom: 1px solid;}.cky-preference-content-wrapper img{height: 25px; width: 25px;}.cky-preference-content-wrapper .cky-show-desc-btn{font-size: 14px; font-family: inherit; color: #1863dc; text-decoration: none; line-height: 24px; padding: 0; margin: 0; white-space: nowrap; cursor: pointer; background: transparent; border-color: transparent; text-transform: none; min-height: 0; text-shadow: none; box-shadow: none;}.cky-accordion-wrapper{margin-bottom: 10px;}.cky-accordion{border-bottom: 1px solid;}.cky-accordion:last-child{border-bottom: none;}.cky-accordion .cky-accordion-item{display: flex; margin-top: 10px;}.cky-accordion .cky-accordion-body{display: none;}.cky-accordion.cky-accordion-active .cky-accordion-body{display: block; padding: 0 22px; margin-bottom: 16px;}.cky-accordion-header-wrapper{cursor: pointer; width: 100%;}.cky-accordion-item .cky-accordion-header{display: flex; justify-content: space-between; align-items: center;}.cky-accordion-header .cky-accordion-btn{font-size: 16px; font-family: inherit; color: #212121; line-height: 24px; background: none; border: none; font-weight: 700; padding: 0; margin: 0; cursor: pointer; text-transform: none; min-height: 0; text-shadow: none; box-shadow: none;}.cky-accordion-header .cky-always-active{color: #008000; font-weight: 600; line-height: 24px; font-size: 14px;}.cky-accordion-header-des{font-size: 14px; line-height: 24px; margin: 10px 0 16px 0;}.cky-accordion-chevron{margin-right: 22px; position: relative; cursor: pointer;}.cky-accordion-chevron-hide{display: none;}.cky-accordion .cky-accordion-chevron i::before{content: \"\"; position: absolute; border-right: 1.4px solid; border-bottom: 1.4px solid; border-color: inherit; height: 6px; width: 6px; -webkit-transform: rotate(-45deg); -moz-transform: rotate(-45deg); -ms-transform: rotate(-45deg); -o-transform: rotate(-45deg); transform: rotate(-45deg); transition: all 0.2s ease-in-out; top: 8px;}.cky-accordion.cky-accordion-active .cky-accordion-chevron i::before{-webkit-transform: rotate(45deg); -moz-transform: rotate(45deg); -ms-transform: rotate(45deg); -o-transform: rotate(45deg); transform: rotate(45deg);}.cky-audit-table{background: #f4f4f4; border-radius: 6px;}.cky-audit-table .cky-empty-cookies-text{color: inherit; font-size: 12px; line-height: 24px; margin: 0; padding: 10px;}.cky-audit-table .cky-cookie-des-table{font-size: 12px; line-height: 24px; font-weight: normal; padding: 15px 10px; border-bottom: 1px solid; border-bottom-color: inherit; margin: 0;}.cky-audit-table .cky-cookie-des-table:last-child{border-bottom: none;}.cky-audit-table .cky-cookie-des-table li{list-style-type: none; display: flex; padding: 3px 0;}.cky-audit-table .cky-cookie-des-table li:first-child{padding-top: 0;}.cky-cookie-des-table li div:first-child{width: 100px; font-weight: 600; word-break: break-word; word-wrap: break-word;}.cky-cookie-des-table li div:last-child{flex: 1; word-break: break-word; word-wrap: break-word; margin-left: 8px;}.cky-footer-shadow{display: block; width: 100%; height: 40px; background: linear-gradient(180deg, rgba(255, 255, 255, 0) 0%, #ffffff 100%); position: absolute; bottom: calc(100% - 1px);}.cky-footer-wrapper{position: relative;}.cky-prefrence-btn-wrapper{display: flex; flex-wrap: wrap; align-items: center; justify-content: center; padding: 22px 24px; border-top: 1px solid;}.cky-prefrence-btn-wrapper .cky-btn{flex: auto; max-width: 100%; text-shadow: none; box-shadow: none;}.cky-btn-preferences{color: #1863dc; background: transparent; border: 2px solid #1863dc;}.cky-preference-header,.cky-preference-body-wrapper,.cky-preference-content-wrapper,.cky-accordion-wrapper,.cky-accordion,.cky-accordion-wrapper,.cky-footer-wrapper,.cky-prefrence-btn-wrapper{border-color: inherit;}@media (max-width: 845px){.cky-modal{max-width: calc(100% - 16px);}}@media (max-width: 576px){.cky-modal{max-width: 100%;}.cky-preference-center{max-height: 100vh;}.cky-prefrence-btn-wrapper{flex-direction: column;}.cky-accordion.cky-accordion-active .cky-accordion-body{padding-right: 0;}.cky-prefrence-btn-wrapper .cky-btn{width: 100%; margin: 10px 0 0 0;}.cky-prefrence-btn-wrapper .cky-btn-reject{order: 3;}.cky-prefrence-btn-wrapper .cky-btn-accept{order: 1; margin-top: 0;}.cky-prefrence-btn-wrapper .cky-btn-preferences{order: 2;}}@media (max-width: 425px){.cky-accordion-chevron{margin-right: 15px;}.cky-notice-btn-wrapper{margin-top: 0;}.cky-accordion.cky-accordion-active .cky-accordion-body{padding: 0 15px;}}@media (max-width: 352px){.cky-preference-header .cky-preference-title{font-size: 16px;}.cky-preference-header{padding: 16px 24px;}.cky-preference-content-wrapper *, .cky-accordion-header-des *{font-size: 12px;}.cky-preference-content-wrapper, .cky-preference-content-wrapper .cky-show-more, .cky-accordion-header .cky-always-active, .cky-accordion-header-des, .cky-preference-content-wrapper .cky-show-desc-btn, .cky-notice-des a.cky-policy{font-size: 12px;}.cky-accordion-header .cky-accordion-btn{font-size: 14px;}}.cky-switch{display: flex;}.cky-switch input[type=\"checkbox\"]{position: relative; width: 44px; height: 24px; margin: 0; background: #d0d5d2; -webkit-appearance: none; border-radius: 50px; cursor: pointer; outline: 0; border: none; top: 0;}.cky-switch input[type=\"checkbox\"]:checked{background: #1863dc;}.cky-switch input[type=\"checkbox\"]:before{position: absolute; content: \"\"; height: 20px; width: 20px; left: 2px; bottom: 2px; border-radius: 50%; background-color: white; -webkit-transition: 0.4s; transition: 0.4s; margin: 0;}.cky-switch input[type=\"checkbox\"]:after{display: none;}.cky-switch input[type=\"checkbox\"]:checked:before{-webkit-transform: translateX(20px); -ms-transform: translateX(20px); transform: translateX(20px);}@media (max-width: 425px){.cky-switch input[type=\"checkbox\"]{width: 38px; height: 21px;}.cky-switch input[type=\"checkbox\"]:before{height: 17px; width: 17px;}.cky-switch input[type=\"checkbox\"]:checked:before{-webkit-transform: translateX(17px); -ms-transform: translateX(17px); transform: translateX(17px);}}.cky-consent-bar .cky-banner-btn-close{position: absolute; right: 9px; top: 5px; background: none; border: none; cursor: pointer; padding: 0; margin: 0; min-height: 0; line-height: 0; height: auto; width: auto; text-shadow: none; box-shadow: none;}.cky-consent-bar .cky-banner-btn-close img{height: 9px; width: 9px; margin: 0;}.cky-notice-group{font-size: 14px; line-height: 24px; font-weight: 400; color: #212121;}.cky-notice-btn-wrapper .cky-btn-do-not-sell{font-size: 14px; line-height: 24px; padding: 6px 0; margin: 0; font-weight: 500; background: none; border-radius: 2px; border: none; cursor: pointer; text-align: left; color: #1863dc; background: transparent; border-color: transparent; box-shadow: none; text-shadow: none;}.cky-consent-bar .cky-banner-btn-close:focus-visible,.cky-notice-btn-wrapper .cky-btn-do-not-sell:focus-visible,.cky-opt-out-btn-wrapper .cky-btn:focus-visible,.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox:focus-visible{outline: 2px solid #1863dc; outline-offset: 2px;}@media (max-width: 440px){.cky-consent-container{width: 100%;}}@media (max-width: 352px){.cky-notice-des a.cky-policy, .cky-notice-btn-wrapper .cky-btn-do-not-sell{font-size: 12px;}}.cky-opt-out-wrapper{padding: 12px 0;}.cky-opt-out-wrapper .cky-opt-out-checkbox-wrapper{display: flex; align-items: center;}.cky-opt-out-checkbox-wrapper .cky-opt-out-checkbox-label{font-size: 16px; font-weight: 700; line-height: 24px; margin: 0 0 0 12px; cursor: pointer;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox{background-color: #ffffff; border: 1px solid black; width: 20px; height: 18.5px; margin: 0; -webkit-appearance: none; position: relative; display: flex; align-items: center; justify-content: center; border-radius: 2px; cursor: pointer;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox:checked{background-color: #1863dc; border: none;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox:checked::after{left: 6px; bottom: 4px; width: 7px; height: 13px; border: solid #ffffff; border-width: 0 3px 3px 0; border-radius: 2px; -webkit-transform: rotate(45deg); -ms-transform: rotate(45deg); transform: rotate(45deg); content: \"\"; position: absolute; box-sizing: border-box;}.cky-opt-out-checkbox-wrapper.cky-disabled .cky-opt-out-checkbox-label,.cky-opt-out-checkbox-wrapper.cky-disabled input[type=\"checkbox\"].cky-opt-out-checkbox{cursor: no-drop;}.cky-gpc-wrapper{margin: 0 0 0 32px;}.cky-footer-wrapper .cky-opt-out-btn-wrapper{display: flex; flex-wrap: wrap; align-items: center; justify-content: center; padding: 22px 24px;}.cky-opt-out-btn-wrapper .cky-btn{flex: auto; max-width: 100%; text-shadow: none; box-shadow: none;}.cky-opt-out-btn-wrapper .cky-btn-cancel{border: 1px solid #dedfe0; background: transparent; color: #858585;}.cky-opt-out-btn-wrapper .cky-btn-confirm{background: #1863dc; color: #ffffff; border: 1px solid #1863dc;}@media (max-width: 352px){.cky-opt-out-checkbox-wrapper .cky-opt-out-checkbox-label{font-size: 14px;}.cky-gpc-wrapper .cky-gpc-desc, .cky-gpc-wrapper .cky-gpc-desc *{font-size: 12px;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox{width: 16px; height: 16px;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox:checked::after{left: 5px; bottom: 4px; width: 3px; height: 9px;}.cky-gpc-wrapper{margin: 0 0 0 28px;}}.video-placeholder-youtube{background-size: 100% 100%; background-position: center; background-repeat: no-repeat; background-color: #b2b0b059; position: relative; display: flex; align-items: center; justify-content: center; max-width: 100%;}.video-placeholder-text-youtube{text-align: center; align-items: center; padding: 10px 16px; background-color: #000000cc; color: #ffffff; border: 1px solid; border-radius: 2px; cursor: pointer;}.video-placeholder-normal{background-image: url(\"\/wp-content\/plugins\/cookie-law-info\/lite\/frontend\/images\/placeholder.svg\"); background-size: 80px; background-position: center; background-repeat: no-repeat; background-color: #b2b0b059; position: relative; display: flex; align-items: flex-end; justify-content: center; max-width: 100%;}.video-placeholder-text-normal{align-items: center; padding: 10px 16px; text-align: center; border: 1px solid; border-radius: 2px; cursor: pointer;}.cky-rtl{direction: rtl; text-align: right;}.cky-rtl .cky-banner-btn-close{left: 9px; right: auto;}.cky-rtl .cky-notice-btn-wrapper .cky-btn:last-child{margin-right: 8px;}.cky-rtl .cky-notice-btn-wrapper .cky-btn:first-child{margin-right: 0;}.cky-rtl .cky-notice-btn-wrapper{margin-left: 0; margin-right: 15px;}.cky-rtl .cky-prefrence-btn-wrapper .cky-btn{margin-right: 8px;}.cky-rtl .cky-prefrence-btn-wrapper .cky-btn:first-child{margin-right: 0;}.cky-rtl .cky-accordion .cky-accordion-chevron i::before{border: none; border-left: 1.4px solid; border-top: 1.4px solid; left: 12px;}.cky-rtl .cky-accordion.cky-accordion-active .cky-accordion-chevron i::before{-webkit-transform: rotate(-135deg); -moz-transform: rotate(-135deg); -ms-transform: rotate(-135deg); -o-transform: rotate(-135deg); transform: rotate(-135deg);}@media (max-width: 768px){.cky-rtl .cky-notice-btn-wrapper{margin-right: 0;}}@media (max-width: 576px){.cky-rtl .cky-notice-btn-wrapper .cky-btn:last-child{margin-right: 0;}.cky-rtl .cky-prefrence-btn-wrapper .cky-btn{margin-right: 0;}.cky-rtl .cky-accordion.cky-accordion-active .cky-accordion-body{padding: 0 22px 0 0;}}@media (max-width: 425px){.cky-rtl .cky-accordion.cky-accordion-active .cky-accordion-body{padding: 0 15px 0 0;}}.cky-rtl .cky-opt-out-btn-wrapper .cky-btn{margin-right: 12px;}.cky-rtl .cky-opt-out-btn-wrapper .cky-btn:first-child{margin-right: 0;}.cky-rtl .cky-opt-out-checkbox-wrapper .cky-opt-out-checkbox-label{margin: 0 12px 0 0;}"}; /* ]]> */ </script> <script type="text/javascript" src="https://artificialintelligencesolutionss.com/wp-content/plugins/cookie-law-info/lite/frontend/js/script.min.js?ver=3.3.1" id="cookie-law-info-js"></script> <script type="text/javascript" src="https://artificialintelligencesolutionss.com/wp-includes/js/jquery/jquery.min.js?ver=3.7.1" id="jquery-core-js"></script> <script type="text/javascript" src="https://artificialintelligencesolutionss.com/wp-includes/js/jquery/jquery-migrate.min.js?ver=3.4.1" id="jquery-migrate-js"></script> <link rel="https://api.w.org/" href="https://artificialintelligencesolutionss.com/wp-json/" /><link rel="alternate" title="JSON" type="application/json" href="https://artificialintelligencesolutionss.com/wp-json/wp/v2/posts/852" /><link rel="EditURI" type="application/rsd+xml" title="RSD" href="https://artificialintelligencesolutionss.com/xmlrpc.php?rsd" /> <meta name="generator" content="WordPress 6.8.3" /> <link rel='shortlink' href='https://artificialintelligencesolutionss.com/?p=852' /> <link rel="alternate" title="oEmbed (JSON)" type="application/json+oembed" href="https://artificialintelligencesolutionss.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fartificialintelligencesolutionss.com%2Fdifferential-privacy-in-ai-research-a-us-guide-to-protect-data%2F" /> <link rel="alternate" title="oEmbed (XML)" type="text/xml+oembed" href="https://artificialintelligencesolutionss.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fartificialintelligencesolutionss.com%2Fdifferential-privacy-in-ai-research-a-us-guide-to-protect-data%2F&#038;format=xml" /> <style id="cky-style-inline">[data-cky-tag]{visibility:hidden;}</style><style> /* MOBILE - até 767px */ @media (max-width: 767px) { .swiper-benefits-pagination .swiper-pagination-bullet { background-color: #ffffff !important; opacity: 0.5; } .swiper-benefits-pagination .swiper-pagination-bullet-active { background-color: #ffffff !important; opacity: 1; } .footer-custom .footer-columns { display: flex; flex-direction: column; align-items: center; } .footer-custom .footer-logo-col { text-align: center; margin-bottom: 30px; } .footer-custom .footer-logo-col img { margin: 0 auto 15px; } .footer-custom .footer-logo-text { font-size: 14px; margin-bottom: 30px; } .footer-custom .footer-columns-group { display: flex; justify-content: center; flex-wrap: wrap; gap: 10px; margin-bottom: 30px; width: 100%; padding: 0 12px; } .footer-custom .footer-columns-group .footer-col { min-width: 140px; max-width: 180px; text-align: center; flex: 1 1 45%; } .footer-custom .footer-col.transparency { width: 100%; max-width: 500px; text-align: center; } .footer-custom h4 { font-weight: bold; font-size: 18px; margin-bottom: 10px; } .footer-custom .footer-logo-text { margin-top: 10px; max-width: 320px; margin-left: auto; margin-right: auto; font-size: 14px; } .footer-custom .footer-menu { list-style: none; padding: 0; margin: 0; } .footer-custom .footer-menu li a { display: block; color: inherit; text-decoration: none; margin-bottom: 6px; } .footer-custom .footer-menu li a:hover { text-decoration: underline; } } /* DESKTOP */ @media (min-width: 768px) { .footer-custom h4 { font-weight: bold; font-size: 18px; margin-bottom: 10px; text-align: left; } .footer-custom .footer-logo-text { margin-top: 10px; max-width: 320px; margin-left: auto; margin-right: auto; font-size: 14px; text-align: center; } .footer-custom .footer-menu { list-style: none; padding: 0; margin: 0; } .footer-custom .footer-menu li a { display: block; color: inherit; text-decoration: none; margin-bottom: 6px; } .footer-custom .footer-menu li a:hover { text-decoration: underline; } .footer-custom .footer-columns { display: flex; justify-content: space-between; align-items: flex-start; gap: 20px; padding: 60px 0; flex-wrap: wrap; } .footer-custom .footer-logo-col { flex: 1 1 25%; } .footer-custom .footer-columns-group { display: flex; flex: 1 1 25%; justify-content: space-between; gap: 60px; } .footer-custom .footer-columns-group .footer-col { flex: 1; text-align: left; } .footer-custom .footer-col.transparency { flex: 1 1 25%; text-align: left; } } .home-posts-pagination-wrapper { text-align: center; margin-top: 30px; MARGIN: 0 AUTO; font-size: 17px; } .home-posts-pagination-wrapper .pagination { display: inline-flex; gap: 8px; } .home-posts-pagination-wrapper .page-numbers { display: inline-flex; align-items: center; justify-content: center; padding: 10px 16px; border: 1px solid #eee; border-radius: 8px; font-weight: 600; color: #111; text-decoration: none; transition: all 0.2s ease; } .home-posts-pagination-wrapper .page-numbers:hover { background-color: #f3f3f3; } .home-posts-pagination-wrapper .page-numbers.current { background-color: #f9f9f9; border: 2px solid #ccc; } .home-posts-title { color: #0d47a1 !important; } .home-posts-tag { color: #1976d2 !important; } .institutional-home h2 { color: #0d47a1 !important; } .institutional-home p { color: #333333 !important; } .benefit-card { background-color: #ffffff !important; border-radius: 15px; padding: 20px; height: 100%; transition: transform 0.3s ease, box-shadow 0.3s ease; } .benefit-card:hover { transform: scale(1.03); box-shadow: 0 8px 24px rgba(0,0,0,0.12); } .benefit-card .card-title { color: #0d47a1 !important; font-weight: bold; display: flex; align-items: center; gap: 0px; margin-bottom: 5px; font-size: 18px; } .benefit-card .card-text { color: #333333 !important; font-size: 14px; } .benefits-block .benefits-title { color: #ffffff; font-size: 22px; text-align: center; margin-bottom: 40px; } .benefits-block .benefits-title strong { color: #bbdefb; } .header { background-color: #1e88e5 !important; } a.nav-link span { color: #ffffff !important; transition: color 0.3s ease; } a.nav-link:hover span { color: #90caf9 !important; } .search-toggle { color: #ffffff !important; } .search-toggle:hover { color: #90caf9 !important; } .fas.fa-search { color: #ffffff !important; } .search-toggle:hover .fas.fa-search { color: #90caf9 !important; } .hero-home h1 { color: #0d47a1 !important; } .hero-home h1 b { color: #1976d2 !important; } .hero-home p.lead { color: #333333 !important; } </style><style> .footer-custom { background-color: #0d47a1 !important; color: #ffffff !important; } .footer-custom a { color: #ffffff !important; } </style><meta name="author" content="Emilly Correa"><style type="text/css">.broken_link, a.broken_link { text-decoration: line-through; }</style><link rel="icon" href="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1-32x32.png" sizes="32x32" /> <link rel="icon" href="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1-192x192.png" sizes="192x192" /> <link rel="apple-touch-icon" href="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1-180x180.png" /> <meta name="msapplication-TileImage" content="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1-270x270.png" /> <style type="text/css" id="wp-custom-css"> .pp-author-boxes-meta { display: none !important; } .cta-robo-seo { background-color: #4CAF50; /* Cor verde padrão */ color: white!important; padding: 20px 30px; border: none; border-radius: 5px; text-align: center; text-decoration: none; display: inline-block; font-size: 25px; cursor: pointer; transition: background-color 0.3s ease, box-shadow 0.3s ease; } .cta-robo-seo:hover { background-color: #45a049; /* Cor verde mais escura no hover */ box-shadow: 0px 0px 10px rgba(0, 128, 0, 0.5); /* Sombra verde suave */ } /* esconder imagem de capa dentro da pagina do post*/ .card-preview.mt-8 { display: none; } /* corrigir espaçamento dos videos nos posts*/ iframe[src*="youtube.com"] { width: 100%; max-width: 100%; height: auto; aspect-ratio: 16 / 9; } </style> <!-- Google Tag Manager --> <!-- End Google Tag Manager --> <!-- Google tag (gtag.js) --> <!-- end Google tag (gtag.js) --> <style> :root { --header-bg-color: #1e88e5; --menu-color: #ffffff; --menu-hover-color: #f0f0f0; } .header { background-color: #1e88e5; } </style> <script src="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/js/faq.js?ver=1753802936"></script> </head> <body class="wp-singular post-template-default single single-post postid-852 single-format-standard wp-theme-ddmp-theme"> <!-- Google Tag Manager (noscript) --> <!-- End Google Tag Manager (noscript) --> <div class="page"> <!-- BEGIN header --> <header class="header"> <div class="container"> <nav class="navbar navbar-expand-lg justify-content-between position-relative"> <div class="navbar-brand"> <a class="navbar-logo" href="https://artificialintelligencesolutionss.com"> <img class="navbar-pic" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/artificialintelligencesolutionss.com_.png" width="160" alt="ARTIFICIAL INTELLIGENCE SOLUTIONSS"> </a> </div> <div class="d-flex align-items-center"> <!-- Botão hamburguer --> <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarDropdown" aria-controls="navbarDropdown" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <!-- Lupa no mobile --> <div class="search-container d-lg-none ml-2"> <button class="search-toggle"> <i class="fas fa-search"></i> </button> <form class="search-form" role="search" method="get" action="https://artificialintelligencesolutionss.com/"> <input type="search" name="s" class="search-input" placeholder="Search..." aria-label="Search"> <button type="submit" class="search-submit"><i class="fas fa-arrow-right"></i></button> </form> </div> </div> <!-- Menu colapsável --> <div class="collapse navbar-collapse" id="navbarDropdown"> <ul id="menu-menu-principal" class="navbar-nav" itemscope itemtype="http://www.schema.org/SiteNavigationElement"><li id="menu-item-569" class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-569 nav-item"><a itemprop="url" href="https://artificialintelligencesolutionss.com/category/ai-business-applications/" class="nav-link"><span itemprop="name">AI Business Applications</span></a></li> <li id="menu-item-570" class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-570 nav-item"><a itemprop="url" href="https://artificialintelligencesolutionss.com/category/ai-ethics-e-governance/" class="nav-link"><span itemprop="name">AI Ethics &amp; Governance</span></a></li> <li id="menu-item-571" class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-571 nav-item"><a itemprop="url" href="https://artificialintelligencesolutionss.com/category/ai-in-healthcare/" class="nav-link"><span itemprop="name">AI in Healthcare</span></a></li> <li id="menu-item-572" class="menu-item menu-item-type-taxonomy menu-item-object-category current-post-ancestor current-menu-parent current-post-parent active menu-item-572 nav-item"><a itemprop="url" href="https://artificialintelligencesolutionss.com/category/ai-research-e-development/" class="nav-link"><span itemprop="name">AI Research &amp; Development</span></a></li> </ul> <div class="header-article">Differential Privacy in AI Research: A US Guide to Protect Data</div> <div class="share"> <div class="share-title">If this content was useful, please <strong>share it</strong></div> <div class="share-list"> <a href="#" class="share-btn share-twitter btn"> <img class="share-icon" src="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/img/icon-twitter-white.svg" alt="Share on Twitter"> <span class="share-label">Share on Twitter</span> </a> <a href="#" class="share-btn share-facebook btn"> <img class="share-icon" src="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/img/icon-facebook-white.svg" alt="Share on Facebook"> <span class="share-label">Share on Facebook</span> </a> </div> </div> </div> <!-- Lupa no desktop --> <div class="search-container d-none d-lg-flex ml-auto"> <button class="search-toggle"> <i class="fas fa-search"></i> </button> <form class="search-form" role="search" method="get" action="https://artificialintelligencesolutionss.com/"> <input type="search" name="s" class="search-input" placeholder="Search..." aria-label="Search"> <button type="submit" class="search-submit"><i class="fas fa-arrow-right"></i></button> </form> </div> </nav> </div> <div class="indicator"> <div class="indicator-position js-indicator-position"></div> </div> </header> <!-- END header --> <!-- BEGIN inner --> <div class="inner"> <article id="post-852" class="post-852 post type-post status-publish format-standard has-post-thumbnail hentry category-ai-research-e-development"> <div class="container"> <div class="row"> <div class="col-md-8 col-lg-8 mx-auto"> <div class="section section-featured js-section-featured"> <div class="card card-featured card-top m-0"> <div class="card-body"> <h1 class="card-title">Differential Privacy in AI Research: A US Guide to Protect Data</h1> <div class="card-text"></div> <div class="card-author"> <p>By: <b>Emilly Correa</b> on February 20, 2025 <strong>Última atualização em:</strong> 1 de August de 2025</p> </div> </div> <div class="card-preview mt-8"> <img class="card-pic" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774360_f5ec3580_cover.jpg" alt="Differential Privacy in AI Research: A US Guide to Protect Data" /> </div> </div> </div> <div class="section section-content"> <div class="center"> <div class="content"> <p class="summarization"><strong>Implementing differential privacy in AI research is crucial for protecting sensitive data, especially in the US, ensuring compliance with privacy regulations while still enabling valuable insights from the data.</strong></p> <p> <!-- Título Principal SEO: Protect Sensitive Data: Differential Privacy in US AI Research --></p> <p>In the United States, the importance of protecting sensitive data in Artificial Intelligence (AI) research cannot be overstated. This article serves as a comprehensive guide on <strong>how to implement differential privacy in your AI research to protect sensitive data: a US guide</strong>, ensuring both innovation and ethical data handling.</p> <p></p> <h2>Understanding Differential Privacy for AI in the US</h2> <p>Differential privacy (DP) is a system for publicly sharing information about a dataset by describing the patterns of groups within the dataset while withholding information about individuals in the dataset. It&#8217;s particularly relevant in the US due to the increasing focus on data privacy regulations and ethical considerations in AI research.</p> <h3>What is Differential Privacy?</h3> <p>At its core, differential privacy is a mathematical definition of privacy. It ensures that the addition or removal of any single data point in a dataset does not significantly alter the outcome of any analysis performed on that dataset.</p> <h3>Why is it Important in the US?</h3> <p>In the United States, various laws and frameworks such as HIPAA (Health Insurance Portability and Accountability Act) and the California Consumer Privacy Act (CCPA) mandate stringent data protection measures. Differential privacy provides a robust mechanism to comply with these regulations, ensuring that AI research can proceed without compromising individual privacy rights.</p> <p><img decoding="async" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774360_f5ec3580_internal_1.jpg" alt="A flowchart illustrating the steps of implementing differential privacy in an AI research project. The flowchart includes steps like data collection, noise addition, and data analysis, each with a short description." class="aligncenter size-large"/></p> <ul> <li><strong>Data Minimization:</strong> Collect only the necessary data points for your research.</li> <li><strong>Noise Addition:</strong> Introduce calibrated noise to the data to obscure individual contributions.</li> <li><strong>Privacy Budget:</strong> Carefully manage the privacy budget (epsilon and delta) to balance privacy and utility.</li> </ul> <p>Differential privacy isn&#8217;t just a technical exercise; it&#8217;s a commitment to ethical AI development. By understanding and implementing DP, researchers in the US can lead the way in responsible data science – fostering innovation while respecting individual rights and complying with legal standards.</p> <h2>Key Concepts of Differential Privacy</h2> <div class="video-container" style="position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; max-width: 100%; margin-bottom: 20px;"> <iframe style="position: absolute; top: 0; left: 0; width: 100%; height: 100%;" width="560" height="315" src="https://www.youtube.com/embed/e6_FkWQn5mg" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen><br /> </iframe> </div> <p>To effectively implement differential privacy, it&#8217;s crucial to understand its core components. These concepts provide the foundation for protecting sensitive data while preserving data utility for meaningful analysis.</p> <h3>Epsilon (ε) and Delta (δ)</h3> <p>Epsilon (ε) represents the privacy loss, indicating how much the privacy of individuals is compromised. A smaller epsilon value means stronger privacy protection. Delta (δ) is the probability that the differential privacy guarantee might fail. It represents the risk of a complete privacy breach. Typically, delta is set to be very small.</p> <h3>Sensitivity</h3> <p>Sensitivity measures the maximum change in the outcome of a query when a single individual’s data is added or removed from the dataset. It’s important to accurately calculate the sensitivity of your queries to calibrate the amount of noise needed to ensure differential privacy.</p> <h3>Noise Addition Mechanisms</h3> <p>Noise addition is a key technique in differential privacy. Mechanisms like the Laplace mechanism and Gaussian mechanism add random noise to the query results to obscure individual contributions.</p> <ul> <li><strong>Laplace Mechanism:</strong> Adds noise drawn from a Laplace distribution, suitable for queries with bounded sensitivity.</li> <li><strong>Gaussian Mechanism:</strong> Adds noise drawn from a Gaussian distribution, often used for more complex queries and compositions.</li> <li><strong>Exponential Mechanism:</strong> Used when the output is not numerical but rather from a discrete set, choosing outputs randomly based on a scoring function.</li> </ul> <p>By grasping these key concepts, AI researchers in the US can make informed decisions about how to best apply differential privacy techniques to their specific research contexts. This understanding ensures that privacy protections are robust and effective.</p> <h2>Steps to Implement Differential Privacy in AI Research</h2> <p>Implementing differential privacy requires a structured approach. By following these steps, AI researchers in the US can effectively integrate DP into their projects, ensuring robust privacy protection for sensitive data.</p> <p><img decoding="async" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774360_f5ec3580_internal_2.jpg" alt="A diagram showing the balance between privacy and utility in differential privacy. The diagram illustrates how increasing privacy (adding more noise) can decrease data utility, and vice versa." class="aligncenter size-large"/></p> <h3>Step 1: Data Preprocessing and Sanitization</h3> <p>Before applying any DP techniques, it’s essential to preprocess and sanitize the data. This involves removing or masking any direct identifiers and ensuring that the data is in a format suitable for DP applications.</p> <h3>Step 2: Sensitivity Analysis</h3> <p>Determine the sensitivity of the queries or algorithms you plan to use. This involves calculating the maximum possible change that a single individual’s data can cause in the output. Accurate sensitivity analysis is crucial for calibrating the amount of noise needed to preserve privacy.</p> <h3>Step 3: Choose a Noise Addition Mechanism</h3> <p>Select an appropriate noise addition mechanism based on the type of query and the desired level of privacy. The Laplace mechanism is suitable for queries with bounded sensitivity, while the Gaussian mechanism might be more appropriate for complex compositions.</p> <ul> <li><strong>Calibrate Noise:</strong> Adjust the amount of noise based on the sensitivity and the privacy budget.</li> <li><strong>Apply the Mechanism:</strong> Add the noise to the query results to ensure differential privacy.</li> <li><strong>Verify Privacy:</strong> Confirm that the chosen parameters meet the specified privacy guarantees.</li> </ul> <p>By following these structured steps, AI researchers in the US can successfully implement differential privacy in their projects, ensuring that sensitive data is protected while valuable insights are still gleaned from the data.</p> <h2>Tools and Libraries for Differential Privacy</h2> <p>Several tools and libraries are available to facilitate the implementation of differential privacy. These resources can help AI researchers in the US integrate DP techniques into their projects more efficiently.</p> <h3>Google’s Differential Privacy Library</h3> <p>Google offers an open-source Differential Privacy library designed to make it easier for developers to implement DP in their applications. It provides tools for calculating privacy budgets, adding noise, and performing various DP operations.</p> <h3>Microsoft’s SmartNoise</h3> <p>SmartNoise is another open-source project that provides a comprehensive toolkit for implementing differential privacy. It includes tools for data preprocessing, sensitivity analysis, and noise addition, making it easier to build privacy-preserving applications.</p> <h3>OpenDP</h3> <p>The Open Differential Privacy (OpenDP) initiative aims to create a trusted, open-source software ecosystem for differential privacy. It provides a platform for developing and sharing DP tools and techniques.</p> <ul> <li><strong>Python DP Libraries:</strong> Libraries like PyDP offer implementations of DP mechanisms in Python.</li> <li><strong>R DP Packages:</strong> Packages like diffpriv provide functions for adding differential privacy to R-based analyses.</li> <li><strong>Specialized Tools:</strong> Tools tailored for specific tasks like DP-SGD (Differentially Private Stochastic Gradient Descent) are available.</li> </ul> <p>By leveraging these tools and libraries, AI researchers in the US can accelerate the adoption of differential privacy in their projects, ensuring that data privacy is a key consideration in AI development. These resources provide practical support for implementing DP, making it more accessible to researchers across various domains.</p> <h2>Challenges and Considerations in Differential Privacy</h2> <p>While differential privacy offers strong privacy guarantees, it’s not without its challenges. AI researchers in the US need to be aware of these considerations to effectively implement DP in their projects.</p> <h3>Balancing Privacy and Utility</h3> <p>One of the main challenges in differential privacy is balancing the level of privacy protection with the utility of the data. Adding too much noise can protect privacy but also significantly reduce the accuracy and usefulness of the data.</p> <h3>Composition Theorems</h3> <p>Understanding composition theorems is crucial when performing multiple queries on the same dataset. Each query consumes a portion of the privacy budget (epsilon and delta), and the total privacy loss accumulates over multiple queries. Carefully managing the privacy budget is essential to maintain strong privacy guarantees.</p> <h3>Implementation Complexity</h3> <p>Implementing differential privacy can be complex, requiring a deep understanding of both the mathematical foundations and the practical aspects of noise addition. It’s important to have the right expertise and tools to ensure that DP is implemented correctly.</p> <ul> <li><strong>Accurate Sensitivity:</strong> Incorrect sensitivity calculations can lead to insufficient or excessive noise.</li> <li><strong>Budget Management:</strong> Overspending the privacy budget can compromise privacy guarantees.</li> <li><strong>Utility Preservation:</strong> Striking the right balance between privacy and data utility is essential.</li> </ul> <p>By recognizing these challenges and considerations, AI researchers in the US can approach the implementation of differential privacy with a realistic perspective. This awareness allows for more effective planning and execution, ensuring that DP is applied in a way that maximizes both privacy protection and data utility.</p> <h2>Future Trends in Differential Privacy for AI</h2> <p>The field of differential privacy is constantly evolving, with new techniques and applications emerging regularly. AI researchers in the US should stay informed about these trends to leverage the latest advancements in DP.</p> <h3>Advancements in Noise Addition Mechanisms</h3> <p>Researchers are continually developing new noise addition mechanisms that offer better privacy-utility trade-offs. These mechanisms aim to provide stronger privacy guarantees while minimizing the impact on data accuracy.</p> <h3>Differential Privacy in Federated Learning</h3> <p>Federated learning, where AI models are trained on decentralized data sources, is becoming increasingly popular. Integrating differential privacy into federated learning frameworks can provide strong privacy guarantees for the data shared by individual participants.</p> <h3>Applications in Healthcare and Finance</h3> <p>Differential privacy is finding increasing applications in sensitive sectors such as healthcare and finance. In healthcare, DP can enable the sharing of medical data for research purposes while protecting patient privacy. In finance, DP can be used to analyze transaction data without revealing individual financial information.</p> <ul> <li><strong>Automated DP Tools:</strong> Developing automated tools to simplify the implementation of DP.</li> <li><strong>Scalable DP Solutions:</strong> Creating DP solutions that can handle large datasets efficiently.</li> <li><strong>Enhanced Privacy Metrics:</strong> Refining privacy metrics to better quantify and manage privacy risks.</li> </ul> <p>By staying abreast of these future trends, AI researchers in the US can position themselves at the forefront of privacy-preserving AI development. These advancements promise to make DP more accessible, efficient, and effective, paving the way for more widespread adoption across various industries.</p> <p><!-- Início da área da tabela minimalista --></p> <div style="text-align: center; margin-bottom: 20px; margin-top: 20px;"> <!-- Tabela principal --></p> <table style="border-collapse: collapse; margin: 0 auto; display: inline-table; border: 1px solid #000000; font-family: Arial, sans-serif; font-size: 14px;"> <!-- Cabeçalho da Tabela --></p> <thead> <tr style="background-color: #000000; color: white;"> <th style="text-align: center; width: 30%; border: 1px solid #000000; padding: 8px;">Key Concept</th> <th style="border: 1px solid #000000; padding: 8px; text-align: center;">Brief Description</th> </tr> </thead> <p> <!-- Corpo da Tabela --></p> <tbody> <!-- Linha 1 --></p> <tr style="border-bottom: 1px solid #000000; background-color: #f9f9f9;"> <td style="font-weight: bold; text-align: center; border: 1px solid #000000; padding: 8px;">🛡️ Differential Privacy</td> <td style="border: 1px solid #000000; padding: 8px;">Ensures individual data points&#8217; addition/removal doesn&#8217;t significantly alter analysis outcomes.</td> </tr> <p> <!-- Linha 2 --></p> <tr style="border-bottom: 1px solid #000000;"> <td style="font-weight: bold; text-align: center; border: 1px solid #000000; padding: 8px;">📊 Epsilon (ε) &#038; Delta (δ)</td> <td style="border: 1px solid #000000; padding: 8px;">Epsilon represents privacy loss, delta the failure risk of DP guarantees. Lower epsilon means stronger privacy.</td> </tr> <p> <!-- Linha 3 --></p> <tr style="border-bottom: 1px solid #000000; background-color: #f9f9f9;"> <td style="font-weight: bold; text-align: center; border: 1px solid #000000; padding: 8px;">⚙️ Noise Addition</td> <td style="border: 1px solid #000000; padding: 8px;">Adding calibrated noise is a key technique using Laplace or Gaussian mechanisms to obscure individual data contributions.</td> </tr> <p> <!-- Linha 4 (Opcional, se necessário para o tópico 'How to Implement Differential Privacy in Your AI Research to Protect Sensitive Data: A US Guide') --></p> <tr style="background-color: #ffffff;"> <td style="font-weight: bold; text-align: center; border: 1px solid #000000; padding: 8px;">⚖️ Privacy Budget</td> <td style="border: 1px solid #000000; padding: 8px;">Managing a privacy budget is critical, especially when performing multiple queries to avoid cumulative privacy loss.</td> </tr> </tbody> </table> </div> <p><!-- Fim da tabela minimalista --></p> <h2>Frequently Asked Questions (FAQ)</h2> <p><!-- FAQ Item 1 --></p> <div class="faq-item"> <div class="faq-question">What is the main goal of differential privacy?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-1" class="faq-answer"> <p>The main goal is to protect the privacy of individual data points within a dataset while still allowing useful information to be extracted for analysis. It ensures that the contribution of any single individual is obscured.</p> </div> </div> <p><!-- FAQ Item 2 --></p> <div class="faq-item"> <div class="faq-question">How does epsilon (ε) relate to data privacy?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-2" class="faq-answer"> <p>Epsilon represents the privacy loss parameter. A smaller epsilon value indicates a stronger privacy guarantee, meaning that the privacy of individuals in the dataset is better protected from being revealed through data analysis.</p> </div> </div> <p><!-- FAQ Item 3 --></p> <div class="faq-item"> <div class="faq-question">What are some real-world applications of differential privacy?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-3" class="faq-answer"> <p>Differential privacy is used in healthcare to share patient data for research, in finance to analyze transaction data, and in government to release census data. It is also used in AI to train models on sensitive data.</p> </div> </div> <p><!-- FAQ Item 4 --></p> <div class="faq-item"> <div class="faq-question">What are the basic steps to implement differential privacy?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-4" class="faq-answer"> <p>The steps include preprocessing data, analyzing sensitivity, choosing a noise addition mechanism, calibrating noise based on sensitivity and the privacy budget, and then applying the chosen mechanism. Proper management of the privacy budget is also crucial.</p> </div> </div> <p><!-- FAQ Item 5 --></p> <div class="faq-item"> <div class="faq-question">What tools can aid in implementing differential privacy?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-5" class="faq-answer"> <p>Tools include Google’s Differential Privacy library, Microsoft&#8217;s SmartNoise, and the Open Differential Privacy (OpenDP) initiative. Various Python and R packages like PyDP and diffpriv are also available to help.</p> </div> </div> <h2>Conclusion</h2> <p>Implementing <strong>differential privacy</strong> in AI research is not just a technical necessity but an ethical imperative in the US. By understanding the key concepts, following the implementation steps, and leveraging available tools, AI researchers can protect sensitive data while still advancing the field. As data privacy regulations continue to evolve, adopting DP will be crucial for responsible AI development.</p> <p><!-- Início da área do botão --></p> <div style="text-align: center;"><a href="/category/ai-research-&amp;-development" style="background-color: #000000; color: white; border: 1px solid #000000; cursor: pointer; padding: 8px 16px; border-radius: 8px; display: inline-block; margin: 0 auto; text-align: center; white-space: nowrap; transition: background-color 0.3s ease; text-decoration: none;" class="broken_link">Read more content</a></div> <p><!-- Fim da área do botão --></p> </div> </div> </div> <div class="author-bio-section"> <div class="author-avatar"> <img alt='' src='https://secure.gravatar.com/avatar/0c41178f1747957ea608c344f8b50b0c200f2e5fd06488356d8e998ef2c263ec?s=80&#038;d=mm&#038;r=g' srcset='https://secure.gravatar.com/avatar/0c41178f1747957ea608c344f8b50b0c200f2e5fd06488356d8e998ef2c263ec?s=160&#038;d=mm&#038;r=g 2x' class='avatar avatar-80 photo' height='80' width='80' decoding='async'/> </div> <div class="author-info"> <h3 class="author-name">Emilly Correa</h3> <p class="author-description">Emilly Correa has a degree in journalism and a postgraduate degree in Digital Marketing, specializing in Content Production for Social Media. With experience in copywriting and blog management, she combines her passion for writing with digital engagement strategies. She has worked in communications agencies and now dedicates herself to producing informative articles and trend analyses.</p> </div> </div> </div> </div> </div> <div class="section section-more"> <div class="container"> <div class="crp_related "><div class="row"><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/gdpr-vs-us-ai-accountability-act-key-differences-explained/" class="crp_link post-672"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_14_1753760010_6fdbe2be_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="GDPR vs. US AI Accountability Act: Key Differences Explained - Cover Image" style="" title="GDPR vs. US AI Accountability Act: Key Differences Explained" decoding="async" fetchpriority="high" /></figure><span class="crp_title">GDPR vs. US AI Accountability Act: Key Differences Explained</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/is-your-ai-lab-ready-for-the-2025-ai-bill-of-rights-a-us-compliance-ch/" class="crp_link post-836"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753773867_49c8eba8_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="Is Your AI Lab Ready for the 2025 AI Bill of Rights? A US Compliance Checklist - Cover Image" style="" title="Is Your AI Lab Ready for the 2025 AI Bill of Rights? A US Compliance Checklist" decoding="async" loading="lazy" /></figure><span class="crp_title">Is Your AI Lab Ready for the 2025 AI Bill of Rights?&hellip;</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/financial-risks-of-non-compliance-with-ai-ethics-regulations-in-the-us/" class="crp_link post-664"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_14_1753759003_6b39afb8_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="Financial Risks of Non-Compliance with AI Ethics Regulations in the US - Cover Image" style="" title="Financial Risks of Non-Compliance with AI Ethics Regulations in the US" decoding="async" loading="lazy" /></figure><span class="crp_title">Financial Risks of Non-Compliance with AI Ethics&hellip;</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/regulating-ai-navigating-the-complex-challenges/" class="crp_link post-715"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_14_1753772620_93b7167a_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="Regulating AI: Navigating the Complex Challenges - Cover Image" style="" title="Regulating AI: Navigating the Complex Challenges" decoding="async" loading="lazy" /></figure><span class="crp_title">Regulating AI: Navigating the Complex Challenges</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/data-privacy-and-ai-navigating-the-2025-us-federal-guidelines/" class="crp_link post-668"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_14_1753759035_da38688f_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="Data Privacy and AI: Navigating the 2025 US Federal Guidelines - Cover Image" style="" title="Data Privacy and AI: Navigating the 2025 US Federal Guidelines" decoding="async" loading="lazy" /></figure><span class="crp_title">Data Privacy and AI: Navigating the 2025 US Federal&hellip;</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/ethical-ai-in-us-healthcare-fairness-and-transparency/" class="crp_link post-788"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_15_1753773367_9a9f08b3_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="Ethical AI in US Healthcare: Fairness and Transparency - Cover Image" style="" title="Ethical AI in US Healthcare: Fairness and Transparency" decoding="async" loading="lazy" /></figure><span class="crp_title">Ethical AI in US Healthcare: Fairness and Transparency</span></a></div></div><div class="crp_clear"></div></div> </div> </div> </article> </div> <!-- END inner --> <script src="https://cdn.jsdelivr.net/npm/swiper@10/swiper-bundle.min.js"></script> <script> document.addEventListener('DOMContentLoaded', function () { const swiperBenefits = new Swiper('.benefits-swiper', { loop: false, spaceBetween: 16, pagination: { el: '.swiper-benefits-pagination', clickable: true }, breakpoints: { 0: { slidesPerView: 1 }, 768: { slidesPerView: 3 }, 1024: { slidesPerView: 5 } } }); }); </script> <script> document.addEventListener('DOMContentLoaded', function () { const postSwiper = new Swiper('.home-posts-mobile', { loop: false, spaceBetween: 30, slidesPerView: 1, centeredSlides: true, initialSlide: 0, autoHeight: false, pagination: { el: '.home-posts-mobile .swiper-pagination', clickable: true }, navigation: { nextEl: '.home-posts-mobile .swiper-button-next', prevEl: '.home-posts-mobile .swiper-button-prev', }, breakpoints: { 480: { slidesPerView: 1, }, 640: { slidesPerView: 1, }, 768: { slidesPerView: 1, } } }); }); </script> <script> document.addEventListener('DOMContentLoaded', function () { document.querySelectorAll('.search-toggle').forEach(function (toggle) { toggle.addEventListener('click', function (e) { const container = toggle.closest('.search-container'); container.classList.toggle('open'); e.stopPropagation(); }); }); document.addEventListener('click', function (e) { document.querySelectorAll('.search-container.open').forEach(function (container) { if (!container.contains(e.target)) { container.classList.remove('open'); } }); }); }); </script> <footer class="footer-custom" style="background-color: #0d47a1; color: #ffffff;"> <div class="container"> <div class="footer-columns" style="padding: 60px 0;"> <!-- Logo + texto --> <div class="footer-logo-col" style="text-align: center; margin-bottom: 30px;"> <img src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/artificialintelligencesolutionss.com_.png" alt="Logo" width="180" style="margin: 0 auto 20px;"> </div> <!-- Grupo de colunas --> <div class="footer-columns-group"> <div class="footer-col"> <h4>Company</h4> <ul id="menu-menu-principal-1" class="footer-menu" itemscope itemtype="http://www.schema.org/SiteNavigationElement"><li class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-569"><a href="https://artificialintelligencesolutionss.com/category/ai-business-applications/">AI Business Applications</a></li> <li class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-570"><a href="https://artificialintelligencesolutionss.com/category/ai-ethics-e-governance/">AI Ethics &amp; Governance</a></li> <li class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-571"><a href="https://artificialintelligencesolutionss.com/category/ai-in-healthcare/">AI in Healthcare</a></li> <li class="menu-item menu-item-type-taxonomy menu-item-object-category current-post-ancestor current-menu-parent current-post-parent menu-item-572"><a href="https://artificialintelligencesolutionss.com/category/ai-research-e-development/">AI Research &amp; Development</a></li> </ul> </div> <div class="footer-col"> <h4>Legal</h4> <ul id="menu-menu-rodape" class="footer-menu" itemscope itemtype="http://www.schema.org/SiteNavigationElement"><li id="menu-item-565" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-565"><a href="https://artificialintelligencesolutionss.com/about-us/">About Us</a></li> <li id="menu-item-566" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-566"><a href="https://artificialintelligencesolutionss.com/contact/">Contact</a></li> <li id="menu-item-567" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-567"><a href="https://artificialintelligencesolutionss.com/privacy-policy/">Privacy Policy</a></li> <li id="menu-item-568" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-568"><a href="https://artificialintelligencesolutionss.com/terms-and-conditions/">Terms and Conditions</a></li> </ul> </div> </div> <!-- Coluna de Transparência --> <div class="footer-col transparency"> <h4>Disclaimer</h4> <p>The information provided on artificialintelligencesolutionss.com is for informational purposes only. We make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability, or availability with respect to the website or the information contained on the website. We are not liable for any losses or damages arising from the use of this information.</p> </div> </div> </div> <!-- Linha separadora de tela cheia --> <div style="width: 100%; border-top: 1px solid #1565c0;"></div> <!-- Container final de copyright --> <div style="width: 100%; background-color: #0a3880; padding: 12px 0; color: #ffffff; text-align: center;"> <div class="container"> <p style="font-size: 12px; margin: 0;">© 2025 artificialintelligencesolutionss.com. All rights reserved.</p> <p style="font-size: 11px; margin: 5px 0 0 0; opacity: 0.8;"></p> </div> </div> </footer> <script type="speculationrules"> {"prefetch":[{"source":"document","where":{"and":[{"href_matches":"\/*"},{"not":{"href_matches":["\/wp-*.php","\/wp-admin\/*","\/wp-content\/uploads\/*","\/wp-content\/*","\/wp-content\/plugins\/*","\/wp-content\/themes\/ddmp-theme\/*","\/*\\?(.+)"]}},{"not":{"selector_matches":"a[rel~=\"nofollow\"]"}},{"not":{"selector_matches":".no-prefetch, .no-prefetch a"}}]},"eagerness":"conservative"}]} </script> <script id="ckyBannerTemplate" type="text/template"><div class="cky-overlay cky-hide"></div><div class="cky-btn-revisit-wrapper cky-revisit-hide" data-cky-tag="revisit-consent" data-tooltip="Consent Preferences" style="background-color:#0056A7"> <button class="cky-btn-revisit" aria-label="Consent Preferences"> <img src="https://artificialintelligencesolutionss.com/wp-content/plugins/cookie-law-info/lite/frontend/images/revisit.svg" alt="Revisit consent button"> </button></div><div class="cky-consent-container cky-hide" tabindex="0"> <div class="cky-consent-bar" data-cky-tag="notice" style="background-color:#FFFFFF;border-color:#F4F4F4"> <div class="cky-notice"> <p class="cky-title" role="heading" aria-level="1" data-cky-tag="title" style="color:#212121">We value your privacy</p><div class="cky-notice-group"> <div class="cky-notice-des" data-cky-tag="description" style="color:#212121"> <p>We use cookies to enhance your browsing experience, serve personalised ads or content, and analyse our traffic. By clicking "Accept All", you consent to our use of cookies.</p> </div><div class="cky-notice-btn-wrapper" data-cky-tag="notice-buttons"> <button class="cky-btn cky-btn-customize" aria-label="Customise" data-cky-tag="settings-button" style="color:#1863DC;background-color:transparent;border-color:#1863DC">Customise</button> <button class="cky-btn cky-btn-reject" aria-label="Reject All" data-cky-tag="reject-button" style="color:#1863DC;background-color:transparent;border-color:#1863DC">Reject All</button> <button class="cky-btn cky-btn-accept" aria-label="Accept All" data-cky-tag="accept-button" style="color:#FFFFFF;background-color:#1863DC;border-color:#1863DC">Accept All</button> </div></div></div></div></div><div class="cky-modal" tabindex="0"> <div class="cky-preference-center" data-cky-tag="detail" style="color:#212121;background-color:#FFFFFF;border-color:#F4F4F4"> <div class="cky-preference-header"> <span class="cky-preference-title" role="heading" aria-level="1" data-cky-tag="detail-title" style="color:#212121">Customise Consent Preferences</span> <button class="cky-btn-close" aria-label="[cky_preference_close_label]" data-cky-tag="detail-close"> <img src="https://artificialintelligencesolutionss.com/wp-content/plugins/cookie-law-info/lite/frontend/images/close.svg" alt="Close"> </button> </div><div class="cky-preference-body-wrapper"> <div class="cky-preference-content-wrapper" data-cky-tag="detail-description" style="color:#212121"> <p>We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.</p><p>The cookies that are categorised as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. </p><p>We also use third-party cookies that help us analyse how you use this website, store your preferences, and provide the content and advertisements that are relevant to you. These cookies will only be stored in your browser with your prior consent.</p><p>You can choose to enable or disable some or all of these cookies but disabling some of them may affect your browsing experience.</p> </div><div class="cky-accordion-wrapper" data-cky-tag="detail-categories"> <div class="cky-accordion" id="ckyDetailCategorynecessary"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Necessary" data-cky-tag="detail-category-title" style="color:#212121">Necessary</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchnecessary"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div><div class="cky-accordion" id="ckyDetailCategoryfunctional"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Functional" data-cky-tag="detail-category-title" style="color:#212121">Functional</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchfunctional"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div><div class="cky-accordion" id="ckyDetailCategoryanalytics"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Analytics" data-cky-tag="detail-category-title" style="color:#212121">Analytics</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchanalytics"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div><div class="cky-accordion" id="ckyDetailCategoryperformance"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Performance" data-cky-tag="detail-category-title" style="color:#212121">Performance</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchperformance"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Performance cookies are used to understand and analyse the key performance indexes of the website which helps in delivering a better user experience for the visitors.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div><div class="cky-accordion" id="ckyDetailCategoryadvertisement"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Advertisement" data-cky-tag="detail-category-title" style="color:#212121">Advertisement</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchadvertisement"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Advertisement cookies are used to provide visitors with customised advertisements based on the pages you visited previously and to analyse the effectiveness of the ad campaigns.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div> </div></div><div class="cky-footer-wrapper"> <span class="cky-footer-shadow"></span> <div class="cky-prefrence-btn-wrapper" data-cky-tag="detail-buttons"> <button class="cky-btn cky-btn-reject" aria-label="Reject All" data-cky-tag="detail-reject-button" style="color:#1863DC;background-color:transparent;border-color:#1863DC"> Reject All </button> <button class="cky-btn cky-btn-preferences" aria-label="Save My Preferences" data-cky-tag="detail-save-button" style="color:#1863DC;background-color:transparent;border-color:#1863DC"> Save My Preferences </button> <button class="cky-btn cky-btn-accept" aria-label="Accept All" data-cky-tag="detail-accept-button" style="color:#ffffff;background-color:#1863DC;border-color:#1863DC"> Accept All </button> </div></div></div></div></script><script type="text/javascript" src="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/js/search-toggle.js?ver=1753802936" id="search-toggle-js"></script> </body> </html>