In 2025, the key differences between federated learning and centralized learning for AI model development will revolve around data privacy, model accuracy, computational resources, and real-time adaptability, impacting how AI solutions are deployed and scaled.

As we move closer to 2025, the landscape of AI model development is becoming increasingly complex. The choice between federated learning and centralized learning is no longer a simple technical decision but a strategic one, closely tied to data privacy regulations, computational resources, and the need for real-time adaptability. Understanding the key differences between federated learning and centralized learning for AI model development in 2025 is crucial for businesses aiming to leverage AI effectively and responsibly.

Understanding Centralized Learning

Centralized learning is the traditional approach to AI model development, where data from various sources is gathered and stored in a central location. This centralized dataset is then used to train a machine learning model. While straightforward, this method presents challenges in the age of stringent data privacy regulations and increasing data volumes.

In a centralized learning environment, data scientists and machine learning engineers have direct access to all the data, which can speed up the model development process. However, this also means that the system is vulnerable to data breaches and privacy violations. Let’s examine the pros and cons more closely.

Advantages of Centralized Learning

Centralized learning offers several advantages, especially when computational resources are limited or data privacy isn’t a primary concern.

  • Simplicity: The setup and implementation of centralized learning are generally simpler than federated learning.
  • Efficiency: With all data in one place, training can be faster and more efficient.
  • Control: Data scientists have full control over the data and the training process, allowing for more precise tuning and optimization.

Disadvantages of Centralized Learning

Despite its advantages, centralized learning has significant drawbacks that become more pronounced in 2025.

  • Privacy Risks: Centralizing data increases the risk of data breaches and privacy violations.
  • Scalability Issues: As data volumes grow, central storage and processing become bottlenecks.
  • Regulatory Compliance: Complying with data privacy regulations like GDPR and CCPA becomes more challenging.

A diagram illustrating the flow of data in centralized learning, showing multiple devices sending data to a central server for processing and model training. The diagram should emphasize the concentration of data in a single location.

In conclusion, while centralized learning offers simplicity and control, its inherent privacy risks and scalability issues make it less suitable for many AI applications in 2025, especially those dealing with sensitive user data or requiring real-time, distributed processing.

Exploring Federated Learning

Federated learning, on the other hand, is a decentralized approach where machine learning models are trained across a network of devices or servers without exchanging raw data. Instead, each device trains the model locally, and only model updates are shared with a central server for aggregation. This approach enhances data privacy and reduces the need for massive data transfers.

Federated learning is particularly useful in scenarios where data is distributed across numerous devices, such as smartphones, IoT devices, or edge servers. This approach allows AI models to be trained on vast amounts of data while preserving user privacy. Let’s delve into some key aspects of federated learning.

How Federated Learning Works

The process of federated learning typically involves the following steps:

  1. A central server distributes an initial model to a subset of participating devices.
  2. Each device trains the model locally using its own data.
  3. The devices send their model updates back to the central server.
  4. The central server aggregates the updates to create a new global model.
  5. This process is repeated iteratively until the global model converges.

Benefits of Federated Learning in 2025

Federated learning offers several benefits that make it an attractive alternative to centralized learning in 2025.

  • Enhanced Privacy: Data remains on the device, minimizing the risk of data breaches and privacy violations.
  • Improved Scalability: Training is distributed across multiple devices, reducing the load on central servers.
  • Regulatory Compliance: Easier to comply with data privacy regulations as data doesn’t need to be transferred or stored centrally.

A diagram illustrating the flow of data in federated learning, showing multiple devices training a model locally and sending updates to a central server for aggregation. The diagram should highlight the decentralized nature of the learning process.

In summary, federated learning provides a more privacy-conscious and scalable approach to AI model development. Its ability to train models on distributed data without centralizing it makes it a valuable tool in 2025, particularly in industries dealing with sensitive information or large-scale IoT deployments.

Data Privacy and Security

Data privacy and security are paramount concerns in AI model development, especially with increasingly stringent regulations. The fundamental difference between federated learning and centralized learning lies in how they address these concerns. Centralized learning involves consolidating data in one place, making it a target for potential breaches. Federated learning, on the other hand, keeps data decentralized, reducing this risk significantly.

In 2025, businesses will need to prioritize data privacy to maintain customer trust and comply with regulations like GDPR and CCPA. Understanding the nuances of how each approach handles data privacy is crucial for making informed decisions.

Centralized Learning and Privacy Risks

Centralized learning inherently poses greater privacy risks due to the concentration of data. Some of these risks include:

  • Data Breaches: A single data breach can expose sensitive information from multiple sources.
  • Insider Threats: Employees with access to the central data repository could potentially misuse or leak data.
  • Regulatory Non-Compliance: Failure to adequately protect centralized data can result in hefty fines and legal repercussions.

Federated Learning and Privacy Preservation

Federated learning is designed to mitigate these risks by keeping data on the edge devices. This decentralized approach offers several privacy benefits:

  • Data Localization: Data stays on the user’s device, reducing the risk of large-scale breaches.
  • Differential Privacy: Techniques like differential privacy can be applied to model updates to further protect individual data points.
  • Secure Aggregation: Model updates are aggregated in a secure manner, preventing individual contributions from being identified.

In conclusion, federated learning provides a more robust approach to data privacy and security in 2025. By keeping data decentralized and employing privacy-enhancing technologies, it minimizes the risk of data breaches and helps organizations comply with increasingly stringent data privacy regulations.

Model Accuracy and Performance

Model accuracy and performance are critical metrics in AI model development. While centralized learning has traditionally been favored for its ability to achieve high accuracy due to direct access to all data, federated learning is rapidly catching up with advancements in algorithms and techniques. Understanding the trade-offs between these approaches is essential for making informed decisions.

In 2025, the choice between federated learning and centralized learning will depend on the specific application, the quality and distribution of data, and the available computational resources. Let’s take a closer look at how each approach impacts model accuracy and performance.

Centralized Learning: Accuracy and Limitations

Centralized learning has historically been associated with higher model accuracy. However, this advantage comes with limitations:

  • Data Homogeneity: Centralized learning assumes that the data is homogeneous and representative of the entire population, which may not always be the case.
  • Data Quality: The accuracy of the model depends heavily on the quality of the centralized data.
  • Overfitting: Models trained on centralized data can sometimes overfit to the specific characteristics of the dataset, leading to poor generalization on new data.

Federated Learning: Bridging the Accuracy Gap

Federated learning has made significant strides in improving model accuracy and performance:

  • Algorithm Advancements: New federated learning algorithms are designed to handle non-IID (non-independent and identically distributed) data, which is common in distributed environments.
  • Personalization: Federated learning can be combined with personalization techniques to tailor models to individual users or devices.
  • Data Augmentation: Techniques like data augmentation can be used to improve the diversity and quality of local datasets.

In summary, while centralized learning may still hold a slight edge in certain scenarios, federated learning is rapidly closing the gap in model accuracy and performance. With advancements in algorithms and techniques, federated learning is becoming a viable option for a wide range of AI applications in 2025.

Computational Resources and Infrastructure

Computational resources and infrastructure play a crucial role in AI model development. Centralized learning requires powerful central servers to process large datasets, while federated learning leverages the computational capabilities of distributed devices. The choice between these approaches depends on the available resources and the specific requirements of the application.

In 2025, the increasing availability of edge computing resources is making federated learning more attractive, especially for applications that require low latency and real-time processing. Let’s compare the resource requirements of centralized learning and federated learning.

Centralized Learning: High Resource Demands

Centralized learning typically requires significant computational resources and infrastructure:

  • Powerful Servers: Training large models requires high-performance servers with ample CPU, GPU, and memory.
  • Scalable Storage: Centralized data storage needs to be scalable to accommodate growing datasets.
  • Network Bandwidth: Transferring large datasets to the central server requires high network bandwidth.

Federated Learning: Leveraging Edge Computing

Federated learning can reduce the strain on central resources by distributing the computational load to edge devices:

  • Decentralized Processing: Training is performed on local devices, reducing the need for powerful central servers.
  • Reduced Data Transfer: Only model updates are transferred, minimizing network bandwidth requirements.
  • Edge Computing Integration: Federated learning can seamlessly integrate with edge computing infrastructure, enabling real-time processing and low latency.

In conclusion, federated learning offers a more resource-efficient approach to AI model development in 2025. By leveraging the computational capabilities of edge devices, it reduces the need for expensive central infrastructure and enables real-time processing at the edge.

Adaptability and Real-Time Learning

Adaptability and real-time learning are increasingly important in AI model development. Centralized learning models are typically trained offline and deployed, making it difficult to adapt to new data or changing conditions in real time. Federated learning, on the other hand, can continuously learn and adapt as new data becomes available on distributed devices.

In 2025, the ability to adapt in real time will be a key differentiator for AI solutions. Federated learning’s inherent adaptability makes it well-suited for applications that require continuous learning and personalization. Let’s examine the adaptability of centralized learning and federated learning.

Centralized Learning: Limited Adaptability

The traditional centralized learning approach has limited adaptability due to its reliance on offline training:

  • Static Models: Models are trained once and deployed, making it difficult to incorporate new data or adapt to changing conditions.
  • Retraining Overhead: Retraining models requires gathering new data, which can be time-consuming and resource-intensive.
  • Delayed Updates: Updates to the model are typically deployed in batches, resulting in delays in incorporating new information.

Federated Learning: Continuous Learning and Adaptability

Federated learning enables continuous learning and adaptation by training models on distributed devices in real time:

  • Incremental Learning: Models can be continuously updated as new data becomes available on edge devices.
  • Real-Time Adaptation: Models can adapt to changing conditions and user preferences in real time.
  • Personalized Learning: Models can be personalized to individual users or devices, improving accuracy and relevance.

In summary, federated learning offers superior adaptability and real-time learning capabilities in 2025. Its ability to continuously learn and adapt to new data makes it ideal for applications that require personalization, dynamic decision-making, and real-time responsiveness.

Use Cases and Applications

The choice between federated learning and centralized learning depends on the specific use case and application. Centralized learning is well-suited for scenarios where data privacy is not a primary concern and computational resources are abundant. Federated learning is ideal for applications that require data privacy, scalability, and real-time adaptability. As we approach 2025, it’s essential to understand the specific scenarios where each approach excels.

Let’s explore some common use cases and applications for centralized learning and federated learning.

Centralized Learning Use Cases

Centralized learning remains relevant in several scenarios:

  • Medical Diagnosis: Training diagnostic models on aggregated medical records (with appropriate anonymization).
  • Financial Modeling: Building predictive models based on historical financial data.
  • Fraud Detection: Identifying fraudulent transactions using centralized transaction data.

Federated Learning Use Cases

Federated learning is particularly well-suited for:

  • Healthcare: Training models for personalized medicine using patient data from multiple hospitals.
  • Finance: Developing fraud detection models using transaction data from different banks without sharing raw data.
  • IoT: Building predictive maintenance models for industrial equipment using sensor data from numerous devices.

In conclusion, both centralized learning and federated learning have their strengths and weaknesses. The optimal approach depends on the specific requirements of the application, including data privacy, scalability, computational resources, and the need for real-time adaptability. As we move closer to 2025, a hybrid approach that combines the best of both worlds may become increasingly common.

Key Aspect Brief Description
🔒 Data Privacy Federated Learning keeps data on devices, unlike Centralized Learning.
🚀 Scalability Federated Learning scales better with distributed data and resources.
⚙️ Adaptability Federated Learning adapts faster to new data and evolving conditions.
🎯 Accuracy Centralized Learning traditionally offers higher accuracy, but Federated is catching up.

FAQ

What is federated learning?

Federated learning is a decentralized machine learning approach that trains models across a network of devices without exchanging raw data. Each device trains the model locally, and only model updates are shared with a central server for aggregation.

What are the main benefits of federated learning?

The main benefits include enhanced privacy, improved scalability, and regulatory compliance. Data remains on the device, minimizing the risk of data breaches. Training is distributed, reducing the load on central servers. It’s easier to comply with data privacy regulations.

How does centralized learning compare to federated learning in terms of data privacy?

Centralized learning involves consolidating data in one place, making it a target for potential breaches. Federated learning, on the other hand, keeps data decentralized, reducing this risk significantly and enhancing data privacy.

What are the computational resource requirements for each approach?

Centralized learning requires powerful central servers to process large datasets. Federated learning leverages the computational capabilities of distributed devices. This reduces the strain on central resources and enables real-time processing.

In what scenarios is federated learning most useful?

Federated learning is most useful in applications that require data privacy, scalability, and real-time adaptability. It’s ideal for industries like healthcare, finance, and IoT, where data is distributed and sensitive.

Conclusion

In conclusion, understanding the key differences between federated learning and centralized learning is crucial for AI model development in 2025. While centralized learning has its place, federated learning is emerging as a powerful alternative that addresses data privacy concerns, enhances scalability, and enables real-time adaptability. As AI continues to evolve, the ability to leverage both approaches strategically will be essential for organizations seeking to stay ahead of the curve.

Emilly Correa

Emilly Correa has a degree in journalism and a postgraduate degree in Digital Marketing, specializing in Content Production for Social Media. With experience in copywriting and blog management, she combines her passion for writing with digital engagement strategies. She has worked in communications agencies and now dedicates herself to producing informative articles and trend analyses.

<!doctype html> <html lang="en-US"> <head> <link rel='preload' as='script' href='https://securepubads.g.doubleclick.net/tag/js/gpt.js' /> <!-- wrapper --> <!-- wrapper --> <meta charset="UTF-8" /> <title>Federated Learning vs. Centralized Learning: AI Model Development in 2025 - ARTIFICIAL INTELLIGENCE SOLUTIONSS</title> <meta http-equiv="X-UA-Compatible" content="IE=Edge"> <meta name="viewport" content="width=device-width, initial-scale=1"> <!-- search console verification --> <!-- search console verification --> <meta name="author" content="Emilly Correa"> <link rel="icon" href="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css2?family=PT+Sans:wght@400;700&display=swap" rel="stylesheet"> <link rel="stylesheet" media="all" href="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/css/bootstrap.min.css?ver=1753802936"> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/swiper@10/swiper-bundle.min.css" /> <!-- jQuery (necessário para Bootstrap 4 ou inferior) --> <script src="https://code.jquery.com/jquery-3.6.0.min.js"></script> <!-- Bootstrap JS (versão compatível com seu CSS atual) --> <script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"></script> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css"> <meta name='robots' content='index, follow, max-image-preview:large, max-snippet:-1, max-video-preview:-1' /> <style>img:is([sizes="auto" i], [sizes^="auto," i]) { contain-intrinsic-size: 3000px 1500px }</style> <!-- This site is optimized with the Yoast SEO plugin v25.6 - https://yoast.com/wordpress/plugins/seo/ --> <link rel="canonical" href="https://artificialintelligencesolutionss.com/federated-learning-vs-centralized-learning-ai-model-development-in-202/" /> <meta property="og:locale" content="en_US" /> <meta property="og:type" content="article" /> <meta property="og:title" content="Federated Learning vs. Centralized Learning: AI Model Development in 2025 - ARTIFICIAL INTELLIGENCE SOLUTIONSS" /> <meta property="og:description" content="In 2025, the key differences between federated learning and centralized learning for AI model development will revolve around data privacy, model accuracy, computational resources, and real-time adaptability, impacting how AI solutions are deployed and scaled. As we move closer to 2025, the landscape of AI model development is becoming increasingly complex. The choice between federated [&hellip;]" /> <meta property="og:url" content="https://artificialintelligencesolutionss.com/federated-learning-vs-centralized-learning-ai-model-development-in-202/" /> <meta property="og:site_name" content="ARTIFICIAL INTELLIGENCE SOLUTIONSS" /> <meta property="article:published_time" content="2025-03-08T14:29:00+00:00" /> <meta property="article:modified_time" content="2025-08-01T17:35:14+00:00" /> <meta property="og:image" content="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753773479_dd478e67_cover.jpg" /> <meta property="og:image:width" content="626" /> <meta property="og:image:height" content="351" /> <meta property="og:image:type" content="image/jpeg" /> <meta name="author" content="Emilly Correa" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:label1" content="Written by" /> <meta name="twitter:data1" content="Emilly Correa" /> <meta name="twitter:label2" content="Est. reading time" /> <meta name="twitter:data2" content="12 minutes" /> <script type="application/ld+json" class="yoast-schema-graph">{"@context":"https://schema.org","@graph":[{"@type":"WebPage","@id":"https://artificialintelligencesolutionss.com/federated-learning-vs-centralized-learning-ai-model-development-in-202/","url":"https://artificialintelligencesolutionss.com/federated-learning-vs-centralized-learning-ai-model-development-in-202/","name":"Federated Learning vs. Centralized Learning: AI Model Development in 2025 - ARTIFICIAL INTELLIGENCE SOLUTIONSS","isPartOf":{"@id":"https://artificialintelligencesolutionss.com/#website"},"primaryImageOfPage":{"@id":"https://artificialintelligencesolutionss.com/federated-learning-vs-centralized-learning-ai-model-development-in-202/#primaryimage"},"image":{"@id":"https://artificialintelligencesolutionss.com/federated-learning-vs-centralized-learning-ai-model-development-in-202/#primaryimage"},"thumbnailUrl":"https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753773479_dd478e67_cover.jpg","datePublished":"2025-03-08T14:29:00+00:00","dateModified":"2025-08-01T17:35:14+00:00","author":{"@id":"https://artificialintelligencesolutionss.com/#/schema/person/bb1a858770181f28b75df4752addef77"},"breadcrumb":{"@id":"https://artificialintelligencesolutionss.com/federated-learning-vs-centralized-learning-ai-model-development-in-202/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https://artificialintelligencesolutionss.com/federated-learning-vs-centralized-learning-ai-model-development-in-202/"]}]},{"@type":"ImageObject","inLanguage":"en-US","@id":"https://artificialintelligencesolutionss.com/federated-learning-vs-centralized-learning-ai-model-development-in-202/#primaryimage","url":"https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753773479_dd478e67_cover.jpg","contentUrl":"https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753773479_dd478e67_cover.jpg","width":626,"height":351,"caption":"Federated Learning vs. Centralized Learning: AI Model Development in 2025 - Cover Image"},{"@type":"BreadcrumbList","@id":"https://artificialintelligencesolutionss.com/federated-learning-vs-centralized-learning-ai-model-development-in-202/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Início","item":"https://artificialintelligencesolutionss.com/"},{"@type":"ListItem","position":2,"name":"Federated Learning vs. Centralized Learning: AI Model Development in 2025"}]},{"@type":"WebSite","@id":"https://artificialintelligencesolutionss.com/#website","url":"https://artificialintelligencesolutionss.com/","name":"ARTIFICIALINTELLIGENCESOLUTIONSS.COM @ DATA2","description":"","potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https://artificialintelligencesolutionss.com/?s={search_term_string}"},"query-input":{"@type":"PropertyValueSpecification","valueRequired":true,"valueName":"search_term_string"}}],"inLanguage":"en-US"},{"@type":"Person","@id":"https://artificialintelligencesolutionss.com/#/schema/person/bb1a858770181f28b75df4752addef77","name":"Emilly Correa","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https://artificialintelligencesolutionss.com/#/schema/person/image/","url":"https://secure.gravatar.com/avatar/0c41178f1747957ea608c344f8b50b0c200f2e5fd06488356d8e998ef2c263ec?s=96&d=mm&r=g","contentUrl":"https://secure.gravatar.com/avatar/0c41178f1747957ea608c344f8b50b0c200f2e5fd06488356d8e998ef2c263ec?s=96&d=mm&r=g","caption":"Emilly Correa"},"description":"Emilly Correa has a degree in journalism and a postgraduate degree in Digital Marketing, specializing in Content Production for Social Media. With experience in copywriting and blog management, she combines her passion for writing with digital engagement strategies. She has worked in communications agencies and now dedicates herself to producing informative articles and trend analyses.","url":"https://artificialintelligencesolutionss.com/author/emilly/"}]}</script> <!-- / Yoast SEO plugin. --> <link rel='dns-prefetch' href='//fonts.googleapis.com' /> <link rel="alternate" type="application/rss+xml" title="ARTIFICIAL INTELLIGENCE SOLUTIONSS &raquo; Federated Learning vs. Centralized Learning: AI Model Development in 2025 Comments Feed" href="https://artificialintelligencesolutionss.com/federated-learning-vs-centralized-learning-ai-model-development-in-202/feed/" /> <script type="text/javascript"> /* <![CDATA[ */ window._wpemojiSettings = {"baseUrl":"https:\/\/s.w.org\/images\/core\/emoji\/16.0.1\/72x72\/","ext":".png","svgUrl":"https:\/\/s.w.org\/images\/core\/emoji\/16.0.1\/svg\/","svgExt":".svg","source":{"concatemoji":"https:\/\/artificialintelligencesolutionss.com\/wp-includes\/js\/wp-emoji-release.min.js?ver=6.8.3"}}; /*! This file is auto-generated */ !function(s,n){var o,i,e;function c(e){try{var t={supportTests:e,timestamp:(new Date).valueOf()};sessionStorage.setItem(o,JSON.stringify(t))}catch(e){}}function p(e,t,n){e.clearRect(0,0,e.canvas.width,e.canvas.height),e.fillText(t,0,0);var t=new Uint32Array(e.getImageData(0,0,e.canvas.width,e.canvas.height).data),a=(e.clearRect(0,0,e.canvas.width,e.canvas.height),e.fillText(n,0,0),new Uint32Array(e.getImageData(0,0,e.canvas.width,e.canvas.height).data));return t.every(function(e,t){return e===a[t]})}function u(e,t){e.clearRect(0,0,e.canvas.width,e.canvas.height),e.fillText(t,0,0);for(var n=e.getImageData(16,16,1,1),a=0;a<n.data.length;a++)if(0!==n.data[a])return!1;return!0}function f(e,t,n,a){switch(t){case"flag":return n(e,"\ud83c\udff3\ufe0f\u200d\u26a7\ufe0f","\ud83c\udff3\ufe0f\u200b\u26a7\ufe0f")?!1:!n(e,"\ud83c\udde8\ud83c\uddf6","\ud83c\udde8\u200b\ud83c\uddf6")&&!n(e,"\ud83c\udff4\udb40\udc67\udb40\udc62\udb40\udc65\udb40\udc6e\udb40\udc67\udb40\udc7f","\ud83c\udff4\u200b\udb40\udc67\u200b\udb40\udc62\u200b\udb40\udc65\u200b\udb40\udc6e\u200b\udb40\udc67\u200b\udb40\udc7f");case"emoji":return!a(e,"\ud83e\udedf")}return!1}function g(e,t,n,a){var r="undefined"!=typeof WorkerGlobalScope&&self instanceof WorkerGlobalScope?new OffscreenCanvas(300,150):s.createElement("canvas"),o=r.getContext("2d",{willReadFrequently:!0}),i=(o.textBaseline="top",o.font="600 32px Arial",{});return e.forEach(function(e){i[e]=t(o,e,n,a)}),i}function t(e){var t=s.createElement("script");t.src=e,t.defer=!0,s.head.appendChild(t)}"undefined"!=typeof Promise&&(o="wpEmojiSettingsSupports",i=["flag","emoji"],n.supports={everything:!0,everythingExceptFlag:!0},e=new Promise(function(e){s.addEventListener("DOMContentLoaded",e,{once:!0})}),new Promise(function(t){var n=function(){try{var e=JSON.parse(sessionStorage.getItem(o));if("object"==typeof e&&"number"==typeof e.timestamp&&(new Date).valueOf()<e.timestamp+604800&&"object"==typeof e.supportTests)return e.supportTests}catch(e){}return null}();if(!n){if("undefined"!=typeof Worker&&"undefined"!=typeof OffscreenCanvas&&"undefined"!=typeof URL&&URL.createObjectURL&&"undefined"!=typeof Blob)try{var e="postMessage("+g.toString()+"("+[JSON.stringify(i),f.toString(),p.toString(),u.toString()].join(",")+"));",a=new Blob([e],{type:"text/javascript"}),r=new Worker(URL.createObjectURL(a),{name:"wpTestEmojiSupports"});return void(r.onmessage=function(e){c(n=e.data),r.terminate(),t(n)})}catch(e){}c(n=g(i,f,p,u))}t(n)}).then(function(e){for(var t in e)n.supports[t]=e[t],n.supports.everything=n.supports.everything&&n.supports[t],"flag"!==t&&(n.supports.everythingExceptFlag=n.supports.everythingExceptFlag&&n.supports[t]);n.supports.everythingExceptFlag=n.supports.everythingExceptFlag&&!n.supports.flag,n.DOMReady=!1,n.readyCallback=function(){n.DOMReady=!0}}).then(function(){return e}).then(function(){var e;n.supports.everything||(n.readyCallback(),(e=n.source||{}).concatemoji?t(e.concatemoji):e.wpemoji&&e.twemoji&&(t(e.twemoji),t(e.wpemoji)))}))}((window,document),window._wpemojiSettings); /* ]]> */ </script> <link rel='stylesheet' id='google-font-css' href='https://fonts.googleapis.com/css2?family=PT+Sans:wght@400;700&#038;display=swap' type='text/css' media='all' /> <style id='wp-emoji-styles-inline-css' type='text/css'> img.wp-smiley, img.emoji { display: inline !important; border: none !important; box-shadow: none !important; height: 1em !important; width: 1em !important; margin: 0 0.07em !important; vertical-align: -0.1em !important; background: none !important; padding: 0 !important; } </style> <link rel='stylesheet' id='wp-block-library-css' href='https://artificialintelligencesolutionss.com/wp-includes/css/dist/block-library/style.min.css?ver=6.8.3' type='text/css' media='all' /> <style id='classic-theme-styles-inline-css' type='text/css'> /*! This file is auto-generated */ .wp-block-button__link{color:#fff;background-color:#32373c;border-radius:9999px;box-shadow:none;text-decoration:none;padding:calc(.667em + 2px) calc(1.333em + 2px);font-size:1.125em}.wp-block-file__button{background:#32373c;color:#fff;text-decoration:none} </style> <style id='global-styles-inline-css' type='text/css'> :root{--wp--preset--aspect-ratio--square: 1;--wp--preset--aspect-ratio--4-3: 4/3;--wp--preset--aspect-ratio--3-4: 3/4;--wp--preset--aspect-ratio--3-2: 3/2;--wp--preset--aspect-ratio--2-3: 2/3;--wp--preset--aspect-ratio--16-9: 16/9;--wp--preset--aspect-ratio--9-16: 9/16;--wp--preset--color--black: #000000;--wp--preset--color--cyan-bluish-gray: #abb8c3;--wp--preset--color--white: #ffffff;--wp--preset--color--pale-pink: #f78da7;--wp--preset--color--vivid-red: #cf2e2e;--wp--preset--color--luminous-vivid-orange: #ff6900;--wp--preset--color--luminous-vivid-amber: #fcb900;--wp--preset--color--light-green-cyan: #7bdcb5;--wp--preset--color--vivid-green-cyan: #00d084;--wp--preset--color--pale-cyan-blue: #8ed1fc;--wp--preset--color--vivid-cyan-blue: #0693e3;--wp--preset--color--vivid-purple: #9b51e0;--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple: linear-gradient(135deg,rgba(6,147,227,1) 0%,rgb(155,81,224) 100%);--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan: linear-gradient(135deg,rgb(122,220,180) 0%,rgb(0,208,130) 100%);--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange: linear-gradient(135deg,rgba(252,185,0,1) 0%,rgba(255,105,0,1) 100%);--wp--preset--gradient--luminous-vivid-orange-to-vivid-red: linear-gradient(135deg,rgba(255,105,0,1) 0%,rgb(207,46,46) 100%);--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray: linear-gradient(135deg,rgb(238,238,238) 0%,rgb(169,184,195) 100%);--wp--preset--gradient--cool-to-warm-spectrum: linear-gradient(135deg,rgb(74,234,220) 0%,rgb(151,120,209) 20%,rgb(207,42,186) 40%,rgb(238,44,130) 60%,rgb(251,105,98) 80%,rgb(254,248,76) 100%);--wp--preset--gradient--blush-light-purple: linear-gradient(135deg,rgb(255,206,236) 0%,rgb(152,150,240) 100%);--wp--preset--gradient--blush-bordeaux: linear-gradient(135deg,rgb(254,205,165) 0%,rgb(254,45,45) 50%,rgb(107,0,62) 100%);--wp--preset--gradient--luminous-dusk: linear-gradient(135deg,rgb(255,203,112) 0%,rgb(199,81,192) 50%,rgb(65,88,208) 100%);--wp--preset--gradient--pale-ocean: linear-gradient(135deg,rgb(255,245,203) 0%,rgb(182,227,212) 50%,rgb(51,167,181) 100%);--wp--preset--gradient--electric-grass: linear-gradient(135deg,rgb(202,248,128) 0%,rgb(113,206,126) 100%);--wp--preset--gradient--midnight: linear-gradient(135deg,rgb(2,3,129) 0%,rgb(40,116,252) 100%);--wp--preset--font-size--small: 13px;--wp--preset--font-size--medium: 20px;--wp--preset--font-size--large: 36px;--wp--preset--font-size--x-large: 42px;--wp--preset--spacing--20: 0.44rem;--wp--preset--spacing--30: 0.67rem;--wp--preset--spacing--40: 1rem;--wp--preset--spacing--50: 1.5rem;--wp--preset--spacing--60: 2.25rem;--wp--preset--spacing--70: 3.38rem;--wp--preset--spacing--80: 5.06rem;--wp--preset--shadow--natural: 6px 6px 9px rgba(0, 0, 0, 0.2);--wp--preset--shadow--deep: 12px 12px 50px rgba(0, 0, 0, 0.4);--wp--preset--shadow--sharp: 6px 6px 0px rgba(0, 0, 0, 0.2);--wp--preset--shadow--outlined: 6px 6px 0px -3px rgba(255, 255, 255, 1), 6px 6px rgba(0, 0, 0, 1);--wp--preset--shadow--crisp: 6px 6px 0px rgba(0, 0, 0, 1);}:where(.is-layout-flex){gap: 0.5em;}:where(.is-layout-grid){gap: 0.5em;}body .is-layout-flex{display: flex;}.is-layout-flex{flex-wrap: wrap;align-items: center;}.is-layout-flex > :is(*, div){margin: 0;}body .is-layout-grid{display: grid;}.is-layout-grid > :is(*, div){margin: 0;}:where(.wp-block-columns.is-layout-flex){gap: 2em;}:where(.wp-block-columns.is-layout-grid){gap: 2em;}:where(.wp-block-post-template.is-layout-flex){gap: 1.25em;}:where(.wp-block-post-template.is-layout-grid){gap: 1.25em;}.has-black-color{color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-color{color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-color{color: var(--wp--preset--color--white) !important;}.has-pale-pink-color{color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-color{color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-color{color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-color{color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-color{color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-color{color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-color{color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-color{color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-color{color: var(--wp--preset--color--vivid-purple) !important;}.has-black-background-color{background-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-background-color{background-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-background-color{background-color: var(--wp--preset--color--white) !important;}.has-pale-pink-background-color{background-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-background-color{background-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-background-color{background-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-background-color{background-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-background-color{background-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-background-color{background-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-background-color{background-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-background-color{background-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-background-color{background-color: var(--wp--preset--color--vivid-purple) !important;}.has-black-border-color{border-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-border-color{border-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-border-color{border-color: var(--wp--preset--color--white) !important;}.has-pale-pink-border-color{border-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-border-color{border-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-border-color{border-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-border-color{border-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-border-color{border-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-border-color{border-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-border-color{border-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-border-color{border-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-border-color{border-color: var(--wp--preset--color--vivid-purple) !important;}.has-vivid-cyan-blue-to-vivid-purple-gradient-background{background: var(--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple) !important;}.has-light-green-cyan-to-vivid-green-cyan-gradient-background{background: var(--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan) !important;}.has-luminous-vivid-amber-to-luminous-vivid-orange-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange) !important;}.has-luminous-vivid-orange-to-vivid-red-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-orange-to-vivid-red) !important;}.has-very-light-gray-to-cyan-bluish-gray-gradient-background{background: var(--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray) !important;}.has-cool-to-warm-spectrum-gradient-background{background: var(--wp--preset--gradient--cool-to-warm-spectrum) !important;}.has-blush-light-purple-gradient-background{background: var(--wp--preset--gradient--blush-light-purple) !important;}.has-blush-bordeaux-gradient-background{background: var(--wp--preset--gradient--blush-bordeaux) !important;}.has-luminous-dusk-gradient-background{background: var(--wp--preset--gradient--luminous-dusk) !important;}.has-pale-ocean-gradient-background{background: var(--wp--preset--gradient--pale-ocean) !important;}.has-electric-grass-gradient-background{background: var(--wp--preset--gradient--electric-grass) !important;}.has-midnight-gradient-background{background: var(--wp--preset--gradient--midnight) !important;}.has-small-font-size{font-size: var(--wp--preset--font-size--small) !important;}.has-medium-font-size{font-size: var(--wp--preset--font-size--medium) !important;}.has-large-font-size{font-size: var(--wp--preset--font-size--large) !important;}.has-x-large-font-size{font-size: var(--wp--preset--font-size--x-large) !important;} :where(.wp-block-post-template.is-layout-flex){gap: 1.25em;}:where(.wp-block-post-template.is-layout-grid){gap: 1.25em;} :where(.wp-block-columns.is-layout-flex){gap: 2em;}:where(.wp-block-columns.is-layout-grid){gap: 2em;} :root :where(.wp-block-pullquote){font-size: 1.5em;line-height: 1.6;} </style> <link rel='stylesheet' id='ddmp-author-box-styles-css' href='https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/css/author-box.css?ver=1753735005' type='text/css' media='all' /> <link rel='stylesheet' id='styles-css' href='https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/style.css?ver=1753802936' type='text/css' media='all' /> <style id='styles-inline-css' type='text/css'> :root { --font-family: 'PT Sans'; } </style> <link rel='stylesheet' id='font-override-css' href='https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/css/font-override.css?ver=1753802936' type='text/css' media='all' /> <link rel='stylesheet' id='header-styles-css' href='https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/css/header-styles.css?ver=1753802936' type='text/css' media='all' /> <script type="text/javascript" id="cookie-law-info-js-extra"> /* <![CDATA[ */ var _ckyConfig = {"_ipData":[],"_assetsURL":"https:\/\/artificialintelligencesolutionss.com\/wp-content\/plugins\/cookie-law-info\/lite\/frontend\/images\/","_publicURL":"https:\/\/artificialintelligencesolutionss.com","_expiry":"365","_categories":[{"name":"Necessary","slug":"necessary","isNecessary":true,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":true,"ccpa":true}},{"name":"Functional","slug":"functional","isNecessary":false,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":false,"ccpa":false}},{"name":"Analytics","slug":"analytics","isNecessary":false,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":false,"ccpa":false}},{"name":"Performance","slug":"performance","isNecessary":false,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":false,"ccpa":false}},{"name":"Advertisement","slug":"advertisement","isNecessary":false,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":false,"ccpa":false}}],"_activeLaw":"gdpr","_rootDomain":"","_block":"1","_showBanner":"1","_bannerConfig":{"settings":{"type":"box","preferenceCenterType":"popup","position":"bottom-left","applicableLaw":"gdpr"},"behaviours":{"reloadBannerOnAccept":false,"loadAnalyticsByDefault":false,"animations":{"onLoad":"animate","onHide":"sticky"}},"config":{"revisitConsent":{"status":true,"tag":"revisit-consent","position":"bottom-left","meta":{"url":"#"},"styles":{"background-color":"#0056A7"},"elements":{"title":{"type":"text","tag":"revisit-consent-title","status":true,"styles":{"color":"#0056a7"}}}},"preferenceCenter":{"toggle":{"status":true,"tag":"detail-category-toggle","type":"toggle","states":{"active":{"styles":{"background-color":"#1863DC"}},"inactive":{"styles":{"background-color":"#D0D5D2"}}}}},"categoryPreview":{"status":false,"toggle":{"status":true,"tag":"detail-category-preview-toggle","type":"toggle","states":{"active":{"styles":{"background-color":"#1863DC"}},"inactive":{"styles":{"background-color":"#D0D5D2"}}}}},"videoPlaceholder":{"status":true,"styles":{"background-color":"#000000","border-color":"#000000","color":"#ffffff"}},"readMore":{"status":false,"tag":"readmore-button","type":"link","meta":{"noFollow":true,"newTab":true},"styles":{"color":"#1863DC","background-color":"transparent","border-color":"transparent"}},"auditTable":{"status":true},"optOption":{"status":true,"toggle":{"status":true,"tag":"optout-option-toggle","type":"toggle","states":{"active":{"styles":{"background-color":"#1863dc"}},"inactive":{"styles":{"background-color":"#FFFFFF"}}}}}}},"_version":"3.3.1","_logConsent":"1","_tags":[{"tag":"accept-button","styles":{"color":"#FFFFFF","background-color":"#1863DC","border-color":"#1863DC"}},{"tag":"reject-button","styles":{"color":"#1863DC","background-color":"transparent","border-color":"#1863DC"}},{"tag":"settings-button","styles":{"color":"#1863DC","background-color":"transparent","border-color":"#1863DC"}},{"tag":"readmore-button","styles":{"color":"#1863DC","background-color":"transparent","border-color":"transparent"}},{"tag":"donotsell-button","styles":{"color":"#1863DC","background-color":"transparent","border-color":"transparent"}},{"tag":"accept-button","styles":{"color":"#FFFFFF","background-color":"#1863DC","border-color":"#1863DC"}},{"tag":"revisit-consent","styles":{"background-color":"#0056A7"}}],"_shortCodes":[{"key":"cky_readmore","content":"<a href=\"#\" class=\"cky-policy\" aria-label=\"Cookie Policy\" target=\"_blank\" rel=\"noopener\" data-cky-tag=\"readmore-button\">Cookie Policy<\/a>","tag":"readmore-button","status":false,"attributes":{"rel":"nofollow","target":"_blank"}},{"key":"cky_show_desc","content":"<button class=\"cky-show-desc-btn\" data-cky-tag=\"show-desc-button\" aria-label=\"Show more\">Show more<\/button>","tag":"show-desc-button","status":true,"attributes":[]},{"key":"cky_hide_desc","content":"<button class=\"cky-show-desc-btn\" data-cky-tag=\"hide-desc-button\" aria-label=\"Show less\">Show less<\/button>","tag":"hide-desc-button","status":true,"attributes":[]},{"key":"cky_category_toggle_label","content":"[cky_{{status}}_category_label] [cky_preference_{{category_slug}}_title]","tag":"","status":true,"attributes":[]},{"key":"cky_enable_category_label","content":"Enable","tag":"","status":true,"attributes":[]},{"key":"cky_disable_category_label","content":"Disable","tag":"","status":true,"attributes":[]},{"key":"cky_video_placeholder","content":"<div class=\"video-placeholder-normal\" data-cky-tag=\"video-placeholder\" id=\"[UNIQUEID]\"><p class=\"video-placeholder-text-normal\" data-cky-tag=\"placeholder-title\">Please accept cookies to access this content<\/p><\/div>","tag":"","status":true,"attributes":[]},{"key":"cky_enable_optout_label","content":"Enable","tag":"","status":true,"attributes":[]},{"key":"cky_disable_optout_label","content":"Disable","tag":"","status":true,"attributes":[]},{"key":"cky_optout_toggle_label","content":"[cky_{{status}}_optout_label] [cky_optout_option_title]","tag":"","status":true,"attributes":[]},{"key":"cky_optout_option_title","content":"Do Not Sell or Share My Personal Information","tag":"","status":true,"attributes":[]},{"key":"cky_optout_close_label","content":"Close","tag":"","status":true,"attributes":[]},{"key":"cky_preference_close_label","content":"Close","tag":"","status":true,"attributes":[]}],"_rtl":"","_language":"en","_providersToBlock":[]}; var _ckyStyles = {"css":".cky-overlay{background: #000000; opacity: 0.4; position: fixed; top: 0; left: 0; width: 100%; height: 100%; z-index: 99999999;}.cky-hide{display: none;}.cky-btn-revisit-wrapper{display: flex; align-items: center; justify-content: center; background: #0056a7; width: 45px; height: 45px; border-radius: 50%; position: fixed; z-index: 999999; cursor: pointer;}.cky-revisit-bottom-left{bottom: 15px; left: 15px;}.cky-revisit-bottom-right{bottom: 15px; right: 15px;}.cky-btn-revisit-wrapper .cky-btn-revisit{display: flex; align-items: center; justify-content: center; background: none; border: none; cursor: pointer; position: relative; margin: 0; padding: 0;}.cky-btn-revisit-wrapper .cky-btn-revisit img{max-width: fit-content; margin: 0; height: 30px; width: 30px;}.cky-revisit-bottom-left:hover::before{content: attr(data-tooltip); position: absolute; background: #4e4b66; color: #ffffff; left: calc(100% + 7px); font-size: 12px; line-height: 16px; width: max-content; padding: 4px 8px; border-radius: 4px;}.cky-revisit-bottom-left:hover::after{position: absolute; content: \"\"; border: 5px solid transparent; left: calc(100% + 2px); border-left-width: 0; border-right-color: #4e4b66;}.cky-revisit-bottom-right:hover::before{content: attr(data-tooltip); position: absolute; background: #4e4b66; color: #ffffff; right: calc(100% + 7px); font-size: 12px; line-height: 16px; width: max-content; padding: 4px 8px; border-radius: 4px;}.cky-revisit-bottom-right:hover::after{position: absolute; content: \"\"; border: 5px solid transparent; right: calc(100% + 2px); border-right-width: 0; border-left-color: #4e4b66;}.cky-revisit-hide{display: none;}.cky-consent-container{position: fixed; width: 440px; box-sizing: border-box; z-index: 9999999; border-radius: 6px;}.cky-consent-container .cky-consent-bar{background: #ffffff; border: 1px solid; padding: 20px 26px; box-shadow: 0 -1px 10px 0 #acabab4d; border-radius: 6px;}.cky-box-bottom-left{bottom: 40px; left: 40px;}.cky-box-bottom-right{bottom: 40px; right: 40px;}.cky-box-top-left{top: 40px; left: 40px;}.cky-box-top-right{top: 40px; right: 40px;}.cky-custom-brand-logo-wrapper .cky-custom-brand-logo{width: 100px; height: auto; margin: 0 0 12px 0;}.cky-notice .cky-title{color: #212121; font-weight: 700; font-size: 18px; line-height: 24px; margin: 0 0 12px 0;}.cky-notice-des *,.cky-preference-content-wrapper *,.cky-accordion-header-des *,.cky-gpc-wrapper .cky-gpc-desc *{font-size: 14px;}.cky-notice-des{color: #212121; font-size: 14px; line-height: 24px; font-weight: 400;}.cky-notice-des img{height: 25px; width: 25px;}.cky-consent-bar .cky-notice-des p,.cky-gpc-wrapper .cky-gpc-desc p,.cky-preference-body-wrapper .cky-preference-content-wrapper p,.cky-accordion-header-wrapper .cky-accordion-header-des p,.cky-cookie-des-table li div:last-child p{color: inherit; margin-top: 0; overflow-wrap: break-word;}.cky-notice-des P:last-child,.cky-preference-content-wrapper p:last-child,.cky-cookie-des-table li div:last-child p:last-child,.cky-gpc-wrapper .cky-gpc-desc p:last-child{margin-bottom: 0;}.cky-notice-des a.cky-policy,.cky-notice-des button.cky-policy{font-size: 14px; color: #1863dc; white-space: nowrap; cursor: pointer; background: transparent; border: 1px solid; text-decoration: underline;}.cky-notice-des button.cky-policy{padding: 0;}.cky-notice-des a.cky-policy:focus-visible,.cky-notice-des button.cky-policy:focus-visible,.cky-preference-content-wrapper .cky-show-desc-btn:focus-visible,.cky-accordion-header .cky-accordion-btn:focus-visible,.cky-preference-header .cky-btn-close:focus-visible,.cky-switch input[type=\"checkbox\"]:focus-visible,.cky-footer-wrapper a:focus-visible,.cky-btn:focus-visible{outline: 2px solid #1863dc; outline-offset: 2px;}.cky-btn:focus:not(:focus-visible),.cky-accordion-header .cky-accordion-btn:focus:not(:focus-visible),.cky-preference-content-wrapper .cky-show-desc-btn:focus:not(:focus-visible),.cky-btn-revisit-wrapper .cky-btn-revisit:focus:not(:focus-visible),.cky-preference-header .cky-btn-close:focus:not(:focus-visible),.cky-consent-bar .cky-banner-btn-close:focus:not(:focus-visible){outline: 0;}button.cky-show-desc-btn:not(:hover):not(:active){color: #1863dc; background: transparent;}button.cky-accordion-btn:not(:hover):not(:active),button.cky-banner-btn-close:not(:hover):not(:active),button.cky-btn-revisit:not(:hover):not(:active),button.cky-btn-close:not(:hover):not(:active){background: transparent;}.cky-consent-bar button:hover,.cky-modal.cky-modal-open button:hover,.cky-consent-bar button:focus,.cky-modal.cky-modal-open button:focus{text-decoration: none;}.cky-notice-btn-wrapper{display: flex; justify-content: flex-start; align-items: center; flex-wrap: wrap; margin-top: 16px;}.cky-notice-btn-wrapper .cky-btn{text-shadow: none; box-shadow: none;}.cky-btn{flex: auto; max-width: 100%; font-size: 14px; font-family: inherit; line-height: 24px; padding: 8px; font-weight: 500; margin: 0 8px 0 0; border-radius: 2px; cursor: pointer; text-align: center; text-transform: none; min-height: 0;}.cky-btn:hover{opacity: 0.8;}.cky-btn-customize{color: #1863dc; background: transparent; border: 2px solid #1863dc;}.cky-btn-reject{color: #1863dc; background: transparent; border: 2px solid #1863dc;}.cky-btn-accept{background: #1863dc; color: #ffffff; border: 2px solid #1863dc;}.cky-btn:last-child{margin-right: 0;}@media (max-width: 576px){.cky-box-bottom-left{bottom: 0; left: 0;}.cky-box-bottom-right{bottom: 0; right: 0;}.cky-box-top-left{top: 0; left: 0;}.cky-box-top-right{top: 0; right: 0;}}@media (max-width: 440px){.cky-box-bottom-left, .cky-box-bottom-right, .cky-box-top-left, .cky-box-top-right{width: 100%; max-width: 100%;}.cky-consent-container .cky-consent-bar{padding: 20px 0;}.cky-custom-brand-logo-wrapper, .cky-notice .cky-title, .cky-notice-des, .cky-notice-btn-wrapper{padding: 0 24px;}.cky-notice-des{max-height: 40vh; overflow-y: scroll;}.cky-notice-btn-wrapper{flex-direction: column; margin-top: 0;}.cky-btn{width: 100%; margin: 10px 0 0 0;}.cky-notice-btn-wrapper .cky-btn-customize{order: 2;}.cky-notice-btn-wrapper .cky-btn-reject{order: 3;}.cky-notice-btn-wrapper .cky-btn-accept{order: 1; margin-top: 16px;}}@media (max-width: 352px){.cky-notice .cky-title{font-size: 16px;}.cky-notice-des *{font-size: 12px;}.cky-notice-des, .cky-btn{font-size: 12px;}}.cky-modal.cky-modal-open{display: flex; visibility: visible; -webkit-transform: translate(-50%, -50%); -moz-transform: translate(-50%, -50%); -ms-transform: translate(-50%, -50%); -o-transform: translate(-50%, -50%); transform: translate(-50%, -50%); top: 50%; left: 50%; transition: all 1s ease;}.cky-modal{box-shadow: 0 32px 68px rgba(0, 0, 0, 0.3); margin: 0 auto; position: fixed; max-width: 100%; background: #ffffff; top: 50%; box-sizing: border-box; border-radius: 6px; z-index: 999999999; color: #212121; -webkit-transform: translate(-50%, 100%); -moz-transform: translate(-50%, 100%); -ms-transform: translate(-50%, 100%); -o-transform: translate(-50%, 100%); transform: translate(-50%, 100%); visibility: hidden; transition: all 0s ease;}.cky-preference-center{max-height: 79vh; overflow: hidden; width: 845px; overflow: hidden; flex: 1 1 0; display: flex; flex-direction: column; border-radius: 6px;}.cky-preference-header{display: flex; align-items: center; justify-content: space-between; padding: 22px 24px; border-bottom: 1px solid;}.cky-preference-header .cky-preference-title{font-size: 18px; font-weight: 700; line-height: 24px;}.cky-preference-header .cky-btn-close{margin: 0; cursor: pointer; vertical-align: middle; padding: 0; background: none; border: none; width: auto; height: auto; min-height: 0; line-height: 0; text-shadow: none; box-shadow: none;}.cky-preference-header .cky-btn-close img{margin: 0; height: 10px; width: 10px;}.cky-preference-body-wrapper{padding: 0 24px; flex: 1; overflow: auto; box-sizing: border-box;}.cky-preference-content-wrapper,.cky-gpc-wrapper .cky-gpc-desc{font-size: 14px; line-height: 24px; font-weight: 400; padding: 12px 0;}.cky-preference-content-wrapper{border-bottom: 1px solid;}.cky-preference-content-wrapper img{height: 25px; width: 25px;}.cky-preference-content-wrapper .cky-show-desc-btn{font-size: 14px; font-family: inherit; color: #1863dc; text-decoration: none; line-height: 24px; padding: 0; margin: 0; white-space: nowrap; cursor: pointer; background: transparent; border-color: transparent; text-transform: none; min-height: 0; text-shadow: none; box-shadow: none;}.cky-accordion-wrapper{margin-bottom: 10px;}.cky-accordion{border-bottom: 1px solid;}.cky-accordion:last-child{border-bottom: none;}.cky-accordion .cky-accordion-item{display: flex; margin-top: 10px;}.cky-accordion .cky-accordion-body{display: none;}.cky-accordion.cky-accordion-active .cky-accordion-body{display: block; padding: 0 22px; margin-bottom: 16px;}.cky-accordion-header-wrapper{cursor: pointer; width: 100%;}.cky-accordion-item .cky-accordion-header{display: flex; justify-content: space-between; align-items: center;}.cky-accordion-header .cky-accordion-btn{font-size: 16px; font-family: inherit; color: #212121; line-height: 24px; background: none; border: none; font-weight: 700; padding: 0; margin: 0; cursor: pointer; text-transform: none; min-height: 0; text-shadow: none; box-shadow: none;}.cky-accordion-header .cky-always-active{color: #008000; font-weight: 600; line-height: 24px; font-size: 14px;}.cky-accordion-header-des{font-size: 14px; line-height: 24px; margin: 10px 0 16px 0;}.cky-accordion-chevron{margin-right: 22px; position: relative; cursor: pointer;}.cky-accordion-chevron-hide{display: none;}.cky-accordion .cky-accordion-chevron i::before{content: \"\"; position: absolute; border-right: 1.4px solid; border-bottom: 1.4px solid; border-color: inherit; height: 6px; width: 6px; -webkit-transform: rotate(-45deg); -moz-transform: rotate(-45deg); -ms-transform: rotate(-45deg); -o-transform: rotate(-45deg); transform: rotate(-45deg); transition: all 0.2s ease-in-out; top: 8px;}.cky-accordion.cky-accordion-active .cky-accordion-chevron i::before{-webkit-transform: rotate(45deg); -moz-transform: rotate(45deg); -ms-transform: rotate(45deg); -o-transform: rotate(45deg); transform: rotate(45deg);}.cky-audit-table{background: #f4f4f4; border-radius: 6px;}.cky-audit-table .cky-empty-cookies-text{color: inherit; font-size: 12px; line-height: 24px; margin: 0; padding: 10px;}.cky-audit-table .cky-cookie-des-table{font-size: 12px; line-height: 24px; font-weight: normal; padding: 15px 10px; border-bottom: 1px solid; border-bottom-color: inherit; margin: 0;}.cky-audit-table .cky-cookie-des-table:last-child{border-bottom: none;}.cky-audit-table .cky-cookie-des-table li{list-style-type: none; display: flex; padding: 3px 0;}.cky-audit-table .cky-cookie-des-table li:first-child{padding-top: 0;}.cky-cookie-des-table li div:first-child{width: 100px; font-weight: 600; word-break: break-word; word-wrap: break-word;}.cky-cookie-des-table li div:last-child{flex: 1; word-break: break-word; word-wrap: break-word; margin-left: 8px;}.cky-footer-shadow{display: block; width: 100%; height: 40px; background: linear-gradient(180deg, rgba(255, 255, 255, 0) 0%, #ffffff 100%); position: absolute; bottom: calc(100% - 1px);}.cky-footer-wrapper{position: relative;}.cky-prefrence-btn-wrapper{display: flex; flex-wrap: wrap; align-items: center; justify-content: center; padding: 22px 24px; border-top: 1px solid;}.cky-prefrence-btn-wrapper .cky-btn{flex: auto; max-width: 100%; text-shadow: none; box-shadow: none;}.cky-btn-preferences{color: #1863dc; background: transparent; border: 2px solid #1863dc;}.cky-preference-header,.cky-preference-body-wrapper,.cky-preference-content-wrapper,.cky-accordion-wrapper,.cky-accordion,.cky-accordion-wrapper,.cky-footer-wrapper,.cky-prefrence-btn-wrapper{border-color: inherit;}@media (max-width: 845px){.cky-modal{max-width: calc(100% - 16px);}}@media (max-width: 576px){.cky-modal{max-width: 100%;}.cky-preference-center{max-height: 100vh;}.cky-prefrence-btn-wrapper{flex-direction: column;}.cky-accordion.cky-accordion-active .cky-accordion-body{padding-right: 0;}.cky-prefrence-btn-wrapper .cky-btn{width: 100%; margin: 10px 0 0 0;}.cky-prefrence-btn-wrapper .cky-btn-reject{order: 3;}.cky-prefrence-btn-wrapper .cky-btn-accept{order: 1; margin-top: 0;}.cky-prefrence-btn-wrapper .cky-btn-preferences{order: 2;}}@media (max-width: 425px){.cky-accordion-chevron{margin-right: 15px;}.cky-notice-btn-wrapper{margin-top: 0;}.cky-accordion.cky-accordion-active .cky-accordion-body{padding: 0 15px;}}@media (max-width: 352px){.cky-preference-header .cky-preference-title{font-size: 16px;}.cky-preference-header{padding: 16px 24px;}.cky-preference-content-wrapper *, .cky-accordion-header-des *{font-size: 12px;}.cky-preference-content-wrapper, .cky-preference-content-wrapper .cky-show-more, .cky-accordion-header .cky-always-active, .cky-accordion-header-des, .cky-preference-content-wrapper .cky-show-desc-btn, .cky-notice-des a.cky-policy{font-size: 12px;}.cky-accordion-header .cky-accordion-btn{font-size: 14px;}}.cky-switch{display: flex;}.cky-switch input[type=\"checkbox\"]{position: relative; width: 44px; height: 24px; margin: 0; background: #d0d5d2; -webkit-appearance: none; border-radius: 50px; cursor: pointer; outline: 0; border: none; top: 0;}.cky-switch input[type=\"checkbox\"]:checked{background: #1863dc;}.cky-switch input[type=\"checkbox\"]:before{position: absolute; content: \"\"; height: 20px; width: 20px; left: 2px; bottom: 2px; border-radius: 50%; background-color: white; -webkit-transition: 0.4s; transition: 0.4s; margin: 0;}.cky-switch input[type=\"checkbox\"]:after{display: none;}.cky-switch input[type=\"checkbox\"]:checked:before{-webkit-transform: translateX(20px); -ms-transform: translateX(20px); transform: translateX(20px);}@media (max-width: 425px){.cky-switch input[type=\"checkbox\"]{width: 38px; height: 21px;}.cky-switch input[type=\"checkbox\"]:before{height: 17px; width: 17px;}.cky-switch input[type=\"checkbox\"]:checked:before{-webkit-transform: translateX(17px); -ms-transform: translateX(17px); transform: translateX(17px);}}.cky-consent-bar .cky-banner-btn-close{position: absolute; right: 9px; top: 5px; background: none; border: none; cursor: pointer; padding: 0; margin: 0; min-height: 0; line-height: 0; height: auto; width: auto; text-shadow: none; box-shadow: none;}.cky-consent-bar .cky-banner-btn-close img{height: 9px; width: 9px; margin: 0;}.cky-notice-group{font-size: 14px; line-height: 24px; font-weight: 400; color: #212121;}.cky-notice-btn-wrapper .cky-btn-do-not-sell{font-size: 14px; line-height: 24px; padding: 6px 0; margin: 0; font-weight: 500; background: none; border-radius: 2px; border: none; cursor: pointer; text-align: left; color: #1863dc; background: transparent; border-color: transparent; box-shadow: none; text-shadow: none;}.cky-consent-bar .cky-banner-btn-close:focus-visible,.cky-notice-btn-wrapper .cky-btn-do-not-sell:focus-visible,.cky-opt-out-btn-wrapper .cky-btn:focus-visible,.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox:focus-visible{outline: 2px solid #1863dc; outline-offset: 2px;}@media (max-width: 440px){.cky-consent-container{width: 100%;}}@media (max-width: 352px){.cky-notice-des a.cky-policy, .cky-notice-btn-wrapper .cky-btn-do-not-sell{font-size: 12px;}}.cky-opt-out-wrapper{padding: 12px 0;}.cky-opt-out-wrapper .cky-opt-out-checkbox-wrapper{display: flex; align-items: center;}.cky-opt-out-checkbox-wrapper .cky-opt-out-checkbox-label{font-size: 16px; font-weight: 700; line-height: 24px; margin: 0 0 0 12px; cursor: pointer;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox{background-color: #ffffff; border: 1px solid black; width: 20px; height: 18.5px; margin: 0; -webkit-appearance: none; position: relative; display: flex; align-items: center; justify-content: center; border-radius: 2px; cursor: pointer;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox:checked{background-color: #1863dc; border: none;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox:checked::after{left: 6px; bottom: 4px; width: 7px; height: 13px; border: solid #ffffff; border-width: 0 3px 3px 0; border-radius: 2px; -webkit-transform: rotate(45deg); -ms-transform: rotate(45deg); transform: rotate(45deg); content: \"\"; position: absolute; box-sizing: border-box;}.cky-opt-out-checkbox-wrapper.cky-disabled .cky-opt-out-checkbox-label,.cky-opt-out-checkbox-wrapper.cky-disabled input[type=\"checkbox\"].cky-opt-out-checkbox{cursor: no-drop;}.cky-gpc-wrapper{margin: 0 0 0 32px;}.cky-footer-wrapper .cky-opt-out-btn-wrapper{display: flex; flex-wrap: wrap; align-items: center; justify-content: center; padding: 22px 24px;}.cky-opt-out-btn-wrapper .cky-btn{flex: auto; max-width: 100%; text-shadow: none; box-shadow: none;}.cky-opt-out-btn-wrapper .cky-btn-cancel{border: 1px solid #dedfe0; background: transparent; color: #858585;}.cky-opt-out-btn-wrapper .cky-btn-confirm{background: #1863dc; color: #ffffff; border: 1px solid #1863dc;}@media (max-width: 352px){.cky-opt-out-checkbox-wrapper .cky-opt-out-checkbox-label{font-size: 14px;}.cky-gpc-wrapper .cky-gpc-desc, .cky-gpc-wrapper .cky-gpc-desc *{font-size: 12px;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox{width: 16px; height: 16px;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox:checked::after{left: 5px; bottom: 4px; width: 3px; height: 9px;}.cky-gpc-wrapper{margin: 0 0 0 28px;}}.video-placeholder-youtube{background-size: 100% 100%; background-position: center; background-repeat: no-repeat; background-color: #b2b0b059; position: relative; display: flex; align-items: center; justify-content: center; max-width: 100%;}.video-placeholder-text-youtube{text-align: center; align-items: center; padding: 10px 16px; background-color: #000000cc; color: #ffffff; border: 1px solid; border-radius: 2px; cursor: pointer;}.video-placeholder-normal{background-image: url(\"\/wp-content\/plugins\/cookie-law-info\/lite\/frontend\/images\/placeholder.svg\"); background-size: 80px; background-position: center; background-repeat: no-repeat; background-color: #b2b0b059; position: relative; display: flex; align-items: flex-end; justify-content: center; max-width: 100%;}.video-placeholder-text-normal{align-items: center; padding: 10px 16px; text-align: center; border: 1px solid; border-radius: 2px; cursor: pointer;}.cky-rtl{direction: rtl; text-align: right;}.cky-rtl .cky-banner-btn-close{left: 9px; right: auto;}.cky-rtl .cky-notice-btn-wrapper .cky-btn:last-child{margin-right: 8px;}.cky-rtl .cky-notice-btn-wrapper .cky-btn:first-child{margin-right: 0;}.cky-rtl .cky-notice-btn-wrapper{margin-left: 0; margin-right: 15px;}.cky-rtl .cky-prefrence-btn-wrapper .cky-btn{margin-right: 8px;}.cky-rtl .cky-prefrence-btn-wrapper .cky-btn:first-child{margin-right: 0;}.cky-rtl .cky-accordion .cky-accordion-chevron i::before{border: none; border-left: 1.4px solid; border-top: 1.4px solid; left: 12px;}.cky-rtl .cky-accordion.cky-accordion-active .cky-accordion-chevron i::before{-webkit-transform: rotate(-135deg); -moz-transform: rotate(-135deg); -ms-transform: rotate(-135deg); -o-transform: rotate(-135deg); transform: rotate(-135deg);}@media (max-width: 768px){.cky-rtl .cky-notice-btn-wrapper{margin-right: 0;}}@media (max-width: 576px){.cky-rtl .cky-notice-btn-wrapper .cky-btn:last-child{margin-right: 0;}.cky-rtl .cky-prefrence-btn-wrapper .cky-btn{margin-right: 0;}.cky-rtl .cky-accordion.cky-accordion-active .cky-accordion-body{padding: 0 22px 0 0;}}@media (max-width: 425px){.cky-rtl .cky-accordion.cky-accordion-active .cky-accordion-body{padding: 0 15px 0 0;}}.cky-rtl .cky-opt-out-btn-wrapper .cky-btn{margin-right: 12px;}.cky-rtl .cky-opt-out-btn-wrapper .cky-btn:first-child{margin-right: 0;}.cky-rtl .cky-opt-out-checkbox-wrapper .cky-opt-out-checkbox-label{margin: 0 12px 0 0;}"}; /* ]]> */ </script> <script type="text/javascript" src="https://artificialintelligencesolutionss.com/wp-content/plugins/cookie-law-info/lite/frontend/js/script.min.js?ver=3.3.1" id="cookie-law-info-js"></script> <script type="text/javascript" src="https://artificialintelligencesolutionss.com/wp-includes/js/jquery/jquery.min.js?ver=3.7.1" id="jquery-core-js"></script> <script type="text/javascript" src="https://artificialintelligencesolutionss.com/wp-includes/js/jquery/jquery-migrate.min.js?ver=3.4.1" id="jquery-migrate-js"></script> <link rel="https://api.w.org/" href="https://artificialintelligencesolutionss.com/wp-json/" /><link rel="alternate" title="JSON" type="application/json" href="https://artificialintelligencesolutionss.com/wp-json/wp/v2/posts/816" /><link rel="EditURI" type="application/rsd+xml" title="RSD" href="https://artificialintelligencesolutionss.com/xmlrpc.php?rsd" /> <meta name="generator" content="WordPress 6.8.3" /> <link rel='shortlink' href='https://artificialintelligencesolutionss.com/?p=816' /> <link rel="alternate" title="oEmbed (JSON)" type="application/json+oembed" href="https://artificialintelligencesolutionss.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fartificialintelligencesolutionss.com%2Ffederated-learning-vs-centralized-learning-ai-model-development-in-202%2F" /> <link rel="alternate" title="oEmbed (XML)" type="text/xml+oembed" href="https://artificialintelligencesolutionss.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fartificialintelligencesolutionss.com%2Ffederated-learning-vs-centralized-learning-ai-model-development-in-202%2F&#038;format=xml" /> <style id="cky-style-inline">[data-cky-tag]{visibility:hidden;}</style><style> /* MOBILE - até 767px */ @media (max-width: 767px) { .swiper-benefits-pagination .swiper-pagination-bullet { background-color: #ffffff !important; opacity: 0.5; } .swiper-benefits-pagination .swiper-pagination-bullet-active { background-color: #ffffff !important; opacity: 1; } .footer-custom .footer-columns { display: flex; flex-direction: column; align-items: center; } .footer-custom .footer-logo-col { text-align: center; margin-bottom: 30px; } .footer-custom .footer-logo-col img { margin: 0 auto 15px; } .footer-custom .footer-logo-text { font-size: 14px; margin-bottom: 30px; } .footer-custom .footer-columns-group { display: flex; justify-content: center; flex-wrap: wrap; gap: 10px; margin-bottom: 30px; width: 100%; padding: 0 12px; } .footer-custom .footer-columns-group .footer-col { min-width: 140px; max-width: 180px; text-align: center; flex: 1 1 45%; } .footer-custom .footer-col.transparency { width: 100%; max-width: 500px; text-align: center; } .footer-custom h4 { font-weight: bold; font-size: 18px; margin-bottom: 10px; } .footer-custom .footer-logo-text { margin-top: 10px; max-width: 320px; margin-left: auto; margin-right: auto; font-size: 14px; } .footer-custom .footer-menu { list-style: none; padding: 0; margin: 0; } .footer-custom .footer-menu li a { display: block; color: inherit; text-decoration: none; margin-bottom: 6px; } .footer-custom .footer-menu li a:hover { text-decoration: underline; } } /* DESKTOP */ @media (min-width: 768px) { .footer-custom h4 { font-weight: bold; font-size: 18px; margin-bottom: 10px; text-align: left; } .footer-custom .footer-logo-text { margin-top: 10px; max-width: 320px; margin-left: auto; margin-right: auto; font-size: 14px; text-align: center; } .footer-custom .footer-menu { list-style: none; padding: 0; margin: 0; } .footer-custom .footer-menu li a { display: block; color: inherit; text-decoration: none; margin-bottom: 6px; } .footer-custom .footer-menu li a:hover { text-decoration: underline; } .footer-custom .footer-columns { display: flex; justify-content: space-between; align-items: flex-start; gap: 20px; padding: 60px 0; flex-wrap: wrap; } .footer-custom .footer-logo-col { flex: 1 1 25%; } .footer-custom .footer-columns-group { display: flex; flex: 1 1 25%; justify-content: space-between; gap: 60px; } .footer-custom .footer-columns-group .footer-col { flex: 1; text-align: left; } .footer-custom .footer-col.transparency { flex: 1 1 25%; text-align: left; } } .home-posts-pagination-wrapper { text-align: center; margin-top: 30px; MARGIN: 0 AUTO; font-size: 17px; } .home-posts-pagination-wrapper .pagination { display: inline-flex; gap: 8px; } .home-posts-pagination-wrapper .page-numbers { display: inline-flex; align-items: center; justify-content: center; padding: 10px 16px; border: 1px solid #eee; border-radius: 8px; font-weight: 600; color: #111; text-decoration: none; transition: all 0.2s ease; } .home-posts-pagination-wrapper .page-numbers:hover { background-color: #f3f3f3; } .home-posts-pagination-wrapper .page-numbers.current { background-color: #f9f9f9; border: 2px solid #ccc; } .home-posts-title { color: #0d47a1 !important; } .home-posts-tag { color: #1976d2 !important; } .institutional-home h2 { color: #0d47a1 !important; } .institutional-home p { color: #333333 !important; } .benefit-card { background-color: #ffffff !important; border-radius: 15px; padding: 20px; height: 100%; transition: transform 0.3s ease, box-shadow 0.3s ease; } .benefit-card:hover { transform: scale(1.03); box-shadow: 0 8px 24px rgba(0,0,0,0.12); } .benefit-card .card-title { color: #0d47a1 !important; font-weight: bold; display: flex; align-items: center; gap: 0px; margin-bottom: 5px; font-size: 18px; } .benefit-card .card-text { color: #333333 !important; font-size: 14px; } .benefits-block .benefits-title { color: #ffffff; font-size: 22px; text-align: center; margin-bottom: 40px; } .benefits-block .benefits-title strong { color: #bbdefb; } .header { background-color: #1e88e5 !important; } a.nav-link span { color: #ffffff !important; transition: color 0.3s ease; } a.nav-link:hover span { color: #90caf9 !important; } .search-toggle { color: #ffffff !important; } .search-toggle:hover { color: #90caf9 !important; } .fas.fa-search { color: #ffffff !important; } .search-toggle:hover .fas.fa-search { color: #90caf9 !important; } .hero-home h1 { color: #0d47a1 !important; } .hero-home h1 b { color: #1976d2 !important; } .hero-home p.lead { color: #333333 !important; } </style><style> .footer-custom { background-color: #0d47a1 !important; color: #ffffff !important; } .footer-custom a { color: #ffffff !important; } </style><meta name="author" content="Emilly Correa"><style type="text/css">.broken_link, a.broken_link { text-decoration: line-through; }</style><link rel="icon" href="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1-32x32.png" sizes="32x32" /> <link rel="icon" href="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1-192x192.png" sizes="192x192" /> <link rel="apple-touch-icon" href="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1-180x180.png" /> <meta name="msapplication-TileImage" content="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1-270x270.png" /> <style type="text/css" id="wp-custom-css"> .pp-author-boxes-meta { display: none !important; } .cta-robo-seo { background-color: #4CAF50; /* Cor verde padrão */ color: white!important; padding: 20px 30px; border: none; border-radius: 5px; text-align: center; text-decoration: none; display: inline-block; font-size: 25px; cursor: pointer; transition: background-color 0.3s ease, box-shadow 0.3s ease; } .cta-robo-seo:hover { background-color: #45a049; /* Cor verde mais escura no hover */ box-shadow: 0px 0px 10px rgba(0, 128, 0, 0.5); /* Sombra verde suave */ } /* esconder imagem de capa dentro da pagina do post*/ .card-preview.mt-8 { display: none; } /* corrigir espaçamento dos videos nos posts*/ iframe[src*="youtube.com"] { width: 100%; max-width: 100%; height: auto; aspect-ratio: 16 / 9; } </style> <!-- Google Tag Manager --> <!-- End Google Tag Manager --> <!-- Google tag (gtag.js) --> <!-- end Google tag (gtag.js) --> <style> :root { --header-bg-color: #1e88e5; --menu-color: #ffffff; --menu-hover-color: #f0f0f0; } .header { background-color: #1e88e5; } </style> <script src="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/js/faq.js?ver=1753802936"></script> </head> <body class="wp-singular post-template-default single single-post postid-816 single-format-standard wp-theme-ddmp-theme"> <!-- Google Tag Manager (noscript) --> <!-- End Google Tag Manager (noscript) --> <div class="page"> <!-- BEGIN header --> <header class="header"> <div class="container"> <nav class="navbar navbar-expand-lg justify-content-between position-relative"> <div class="navbar-brand"> <a class="navbar-logo" href="https://artificialintelligencesolutionss.com"> <img class="navbar-pic" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/artificialintelligencesolutionss.com_.png" width="160" alt="ARTIFICIAL INTELLIGENCE SOLUTIONSS"> </a> </div> <div class="d-flex align-items-center"> <!-- Botão hamburguer --> <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarDropdown" aria-controls="navbarDropdown" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <!-- Lupa no mobile --> <div class="search-container d-lg-none ml-2"> <button class="search-toggle"> <i class="fas fa-search"></i> </button> <form class="search-form" role="search" method="get" action="https://artificialintelligencesolutionss.com/"> <input type="search" name="s" class="search-input" placeholder="Search..." aria-label="Search"> <button type="submit" class="search-submit"><i class="fas fa-arrow-right"></i></button> </form> </div> </div> <!-- Menu colapsável --> <div class="collapse navbar-collapse" id="navbarDropdown"> <ul id="menu-menu-principal" class="navbar-nav" itemscope itemtype="http://www.schema.org/SiteNavigationElement"><li id="menu-item-569" class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-569 nav-item"><a itemprop="url" href="https://artificialintelligencesolutionss.com/category/ai-business-applications/" class="nav-link"><span itemprop="name">AI Business Applications</span></a></li> <li id="menu-item-570" class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-570 nav-item"><a itemprop="url" href="https://artificialintelligencesolutionss.com/category/ai-ethics-e-governance/" class="nav-link"><span itemprop="name">AI Ethics &amp; Governance</span></a></li> <li id="menu-item-571" class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-571 nav-item"><a itemprop="url" href="https://artificialintelligencesolutionss.com/category/ai-in-healthcare/" class="nav-link"><span itemprop="name">AI in Healthcare</span></a></li> <li id="menu-item-572" class="menu-item menu-item-type-taxonomy menu-item-object-category current-post-ancestor current-menu-parent current-post-parent active menu-item-572 nav-item"><a itemprop="url" href="https://artificialintelligencesolutionss.com/category/ai-research-e-development/" class="nav-link"><span itemprop="name">AI Research &amp; Development</span></a></li> </ul> <div class="header-article">Federated Learning vs. Centralized Learning: AI Model Development in 2025</div> <div class="share"> <div class="share-title">If this content was useful, please <strong>share it</strong></div> <div class="share-list"> <a href="#" class="share-btn share-twitter btn"> <img class="share-icon" src="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/img/icon-twitter-white.svg" alt="Share on Twitter"> <span class="share-label">Share on Twitter</span> </a> <a href="#" class="share-btn share-facebook btn"> <img class="share-icon" src="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/img/icon-facebook-white.svg" alt="Share on Facebook"> <span class="share-label">Share on Facebook</span> </a> </div> </div> </div> <!-- Lupa no desktop --> <div class="search-container d-none d-lg-flex ml-auto"> <button class="search-toggle"> <i class="fas fa-search"></i> </button> <form class="search-form" role="search" method="get" action="https://artificialintelligencesolutionss.com/"> <input type="search" name="s" class="search-input" placeholder="Search..." aria-label="Search"> <button type="submit" class="search-submit"><i class="fas fa-arrow-right"></i></button> </form> </div> </nav> </div> <div class="indicator"> <div class="indicator-position js-indicator-position"></div> </div> </header> <!-- END header --> <!-- BEGIN inner --> <div class="inner"> <article id="post-816" class="post-816 post type-post status-publish format-standard has-post-thumbnail hentry category-ai-research-e-development"> <div class="container"> <div class="row"> <div class="col-md-8 col-lg-8 mx-auto"> <div class="section section-featured js-section-featured"> <div class="card card-featured card-top m-0"> <div class="card-body"> <h1 class="card-title">Federated Learning vs. Centralized Learning: AI Model Development in 2025</h1> <div class="card-text"></div> <div class="card-author"> <p>By: <b>Emilly Correa</b> on March 8, 2025 <strong>Última atualização em:</strong> 1 de August de 2025</p> </div> </div> <div class="card-preview mt-8"> <img class="card-pic" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753773479_dd478e67_cover.jpg" alt="Federated Learning vs. Centralized Learning: AI Model Development in 2025" /> </div> </div> </div> <div class="section section-content"> <div class="center"> <div class="content"> <p class="summarization"><strong>In 2025, the key differences between federated learning and centralized learning for AI model development will revolve around data privacy, model accuracy, computational resources, and real-time adaptability, impacting how AI solutions are deployed and scaled.</strong></p> <p><!-- Título Principal SEO: Federated vs. Centralized Learning: AI in 2025 --></p> <p>As we move closer to 2025, the landscape of AI model development is becoming increasingly complex. The choice between federated learning and centralized learning is no longer a simple technical decision but a strategic one, closely tied to data privacy regulations, computational resources, and the need for real-time adaptability. Understanding the <strong>key differences between federated learning and centralized learning for AI model development in 2025</strong> is crucial for businesses aiming to leverage AI effectively and responsibly.</p> <p></p> <h2>Understanding Centralized Learning</h2> <p>Centralized learning is the traditional approach to AI model development, where data from various sources is gathered and stored in a central location. This centralized dataset is then used to train a machine learning model. While straightforward, this method presents challenges in the age of stringent data privacy regulations and increasing data volumes.</p> <p>In a centralized learning environment, data scientists and machine learning engineers have direct access to all the data, which can speed up the model development process. However, this also means that the system is vulnerable to data breaches and privacy violations. Let&#8217;s examine the pros and cons more closely.</p> <h3>Advantages of Centralized Learning</h3> <p>Centralized learning offers several advantages, especially when computational resources are limited or data privacy isn&#8217;t a primary concern.</p> <ul> <li><strong>Simplicity:</strong> The setup and implementation of centralized learning are generally simpler than federated learning.</li> <li><strong>Efficiency:</strong> With all data in one place, training can be faster and more efficient.</li> <li><strong>Control:</strong> Data scientists have full control over the data and the training process, allowing for more precise tuning and optimization.</li> </ul> <h3>Disadvantages of Centralized Learning</h3> <p>Despite its advantages, centralized learning has significant drawbacks that become more pronounced in 2025.</p> <ul> <li><strong>Privacy Risks:</strong> Centralizing data increases the risk of data breaches and privacy violations.</li> <li><strong>Scalability Issues:</strong> As data volumes grow, central storage and processing become bottlenecks.</li> <li><strong>Regulatory Compliance:</strong> Complying with data privacy regulations like GDPR and CCPA becomes more challenging.</li> </ul> <p><img decoding="async" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753773479_dd478e67_internal_1.jpg" alt="A diagram illustrating the flow of data in centralized learning, showing multiple devices sending data to a central server for processing and model training. The diagram should emphasize the concentration of data in a single location." class="aligncenter size-large"/></p> <p>In conclusion, while centralized learning offers simplicity and control, its inherent privacy risks and scalability issues make it less suitable for many AI applications in 2025, especially those dealing with sensitive user data or requiring real-time, distributed processing.</p> <h2>Exploring Federated Learning</h2> <p>Federated learning, on the other hand, is a decentralized approach where machine learning models are trained across a network of devices or servers without exchanging raw data. Instead, each device trains the model locally, and only model updates are shared with a central server for aggregation. This approach enhances data privacy and reduces the need for massive data transfers.</p> <p>Federated learning is particularly useful in scenarios where data is distributed across numerous devices, such as smartphones, IoT devices, or edge servers. This approach allows AI models to be trained on vast amounts of data while preserving user privacy. Let&#8217;s delve into some key aspects of federated learning.</p> <h3>How Federated Learning Works</h3> <p>The process of federated learning typically involves the following steps:</p> <ol> <li>A central server distributes an initial model to a subset of participating devices.</li> <li>Each device trains the model locally using its own data.</li> <li>The devices send their model updates back to the central server.</li> <li>The central server aggregates the updates to create a new global model.</li> <li>This process is repeated iteratively until the global model converges.</li> </ol> <h3>Benefits of Federated Learning in 2025</h3> <p>Federated learning offers several benefits that make it an attractive alternative to centralized learning in 2025.</p> <ul> <li><strong>Enhanced Privacy:</strong> Data remains on the device, minimizing the risk of data breaches and privacy violations.</li> <li><strong>Improved Scalability:</strong> Training is distributed across multiple devices, reducing the load on central servers.</li> <li><strong>Regulatory Compliance:</strong> Easier to comply with data privacy regulations as data doesn&#8217;t need to be transferred or stored centrally.</li> </ul> <p><img decoding="async" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753773479_dd478e67_internal_2.jpg" alt="A diagram illustrating the flow of data in federated learning, showing multiple devices training a model locally and sending updates to a central server for aggregation. The diagram should highlight the decentralized nature of the learning process." class="aligncenter size-large"/></p> <p>In summary, federated learning provides a more privacy-conscious and scalable approach to AI model development. Its ability to train models on distributed data without centralizing it makes it a valuable tool in 2025, particularly in industries dealing with sensitive information or large-scale IoT deployments.</p> <h2>Data Privacy and Security</h2> <p>Data privacy and security are paramount concerns in AI model development, especially with increasingly stringent regulations. The fundamental difference between federated learning and centralized learning lies in how they address these concerns. Centralized learning involves consolidating data in one place, making it a target for potential breaches. Federated learning, on the other hand, keeps data decentralized, reducing this risk significantly.</p> <p>In 2025, businesses will need to prioritize data privacy to maintain customer trust and comply with regulations like GDPR and CCPA. Understanding the nuances of how each approach handles data privacy is crucial for making informed decisions.</p> <h3>Centralized Learning and Privacy Risks</h3> <p>Centralized learning inherently poses greater privacy risks due to the concentration of data. Some of these risks include:</p> <ul> <li><strong>Data Breaches:</strong> A single data breach can expose sensitive information from multiple sources.</li> <li><strong>Insider Threats:</strong> Employees with access to the central data repository could potentially misuse or leak data.</li> <li><strong>Regulatory Non-Compliance:</strong> Failure to adequately protect centralized data can result in hefty fines and legal repercussions.</li> </ul> <h3>Federated Learning and Privacy Preservation</h3> <p>Federated learning is designed to mitigate these risks by keeping data on the edge devices. This decentralized approach offers several privacy benefits:</p> <ul> <li><strong>Data Localization:</strong> Data stays on the user&#8217;s device, reducing the risk of large-scale breaches.</li> <li><strong>Differential Privacy:</strong> Techniques like differential privacy can be applied to model updates to further protect individual data points.</li> <li><strong>Secure Aggregation:</strong> Model updates are aggregated in a secure manner, preventing individual contributions from being identified.</li> </ul> <p>In conclusion, federated learning provides a more robust approach to data privacy and security in 2025. By keeping data decentralized and employing privacy-enhancing technologies, it minimizes the risk of data breaches and helps organizations comply with increasingly stringent data privacy regulations.</p> <h2>Model Accuracy and Performance</h2> <p>Model accuracy and performance are critical metrics in AI model development. While centralized learning has traditionally been favored for its ability to achieve high accuracy due to direct access to all data, federated learning is rapidly catching up with advancements in algorithms and techniques. Understanding the trade-offs between these approaches is essential for making informed decisions.</p> <p>In 2025, the choice between federated learning and centralized learning will depend on the specific application, the quality and distribution of data, and the available computational resources. Let&#8217;s take a closer look at how each approach impacts model accuracy and performance.</p> <h3>Centralized Learning: Accuracy and Limitations</h3> <p>Centralized learning has historically been associated with higher model accuracy. However, this advantage comes with limitations:</p> <ul> <li><strong>Data Homogeneity:</strong> Centralized learning assumes that the data is homogeneous and representative of the entire population, which may not always be the case.</li> <li><strong>Data Quality:</strong> The accuracy of the model depends heavily on the quality of the centralized data.</li> <li><strong>Overfitting:</strong> Models trained on centralized data can sometimes overfit to the specific characteristics of the dataset, leading to poor generalization on new data.</li> </ul> <h3>Federated Learning: Bridging the Accuracy Gap</h3> <p>Federated learning has made significant strides in improving model accuracy and performance:</p> <ul> <li><strong>Algorithm Advancements:</strong> New federated learning algorithms are designed to handle non-IID (non-independent and identically distributed) data, which is common in distributed environments.</li> <li><strong>Personalization:</strong> Federated learning can be combined with personalization techniques to tailor models to individual users or devices.</li> <li><strong>Data Augmentation:</strong> Techniques like data augmentation can be used to improve the diversity and quality of local datasets.</li> </ul> <p>In summary, while centralized learning may still hold a slight edge in certain scenarios, federated learning is rapidly closing the gap in model accuracy and performance. With advancements in algorithms and techniques, federated learning is becoming a viable option for a wide range of AI applications in 2025.</p> <h2>Computational Resources and Infrastructure</h2> <p>Computational resources and infrastructure play a crucial role in AI model development. Centralized learning requires powerful central servers to process large datasets, while federated learning leverages the computational capabilities of distributed devices. The choice between these approaches depends on the available resources and the specific requirements of the application.</p> <p>In 2025, the increasing availability of edge computing resources is making federated learning more attractive, especially for applications that require low latency and real-time processing. Let&#8217;s compare the resource requirements of centralized learning and federated learning.</p> <h3>Centralized Learning: High Resource Demands</h3> <p>Centralized learning typically requires significant computational resources and infrastructure:</p> <ul> <li><strong>Powerful Servers:</strong> Training large models requires high-performance servers with ample CPU, GPU, and memory.</li> <li><strong>Scalable Storage:</strong> Centralized data storage needs to be scalable to accommodate growing datasets.</li> <li><strong>Network Bandwidth:</strong> Transferring large datasets to the central server requires high network bandwidth.</li> </ul> <p>Federated Learning: Leveraging Edge Computing</p> <p>Federated learning can reduce the strain on central resources by distributing the computational load to edge devices:</p> <ul> <li><strong>Decentralized Processing:</strong> Training is performed on local devices, reducing the need for powerful central servers.</li> <li><strong>Reduced Data Transfer:</strong> Only model updates are transferred, minimizing network bandwidth requirements.</li> <li><strong>Edge Computing Integration:</strong> Federated learning can seamlessly integrate with edge computing infrastructure, enabling real-time processing and low latency.</li> </ul> <div class="video-container" style="position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; max-width: 100%; margin-bottom: 20px;"> <iframe style="position: absolute; top: 0; left: 0; width: 100%; height: 100%;" width="560" height="315" src="https://www.youtube.com/embed/R3_O2Z0F_sk" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen><br /> </iframe> </div> <p>In conclusion, federated learning offers a more resource-efficient approach to AI model development in 2025. By leveraging the computational capabilities of edge devices, it reduces the need for expensive central infrastructure and enables real-time processing at the edge.</p> <h2>Adaptability and Real-Time Learning</h2> <p>Adaptability and real-time learning are increasingly important in AI model development. Centralized learning models are typically trained offline and deployed, making it difficult to adapt to new data or changing conditions in real time. Federated learning, on the other hand, can continuously learn and adapt as new data becomes available on distributed devices.</p> <p>In 2025, the ability to adapt in real time will be a key differentiator for AI solutions. Federated learning&#8217;s inherent adaptability makes it well-suited for applications that require continuous learning and personalization. Let&#8217;s examine the adaptability of centralized learning and federated learning.</p> <h3>Centralized Learning: Limited Adaptability</h3> <p>The traditional centralized learning approach has limited adaptability due to its reliance on offline training:</p> <ul> <li><strong>Static Models:</strong> Models are trained once and deployed, making it difficult to incorporate new data or adapt to changing conditions.</li> <li><strong>Retraining Overhead:</strong> Retraining models requires gathering new data, which can be time-consuming and resource-intensive.</li> <li><strong>Delayed Updates:</strong> Updates to the model are typically deployed in batches, resulting in delays in incorporating new information.</li> </ul> <h3>Federated Learning: Continuous Learning and Adaptability</h3> <p>Federated learning enables continuous learning and adaptation by training models on distributed devices in real time:</p> <ul> <li><strong>Incremental Learning:</strong> Models can be continuously updated as new data becomes available on edge devices.</li> <li><strong>Real-Time Adaptation:</strong> Models can adapt to changing conditions and user preferences in real time.</li> <li><strong>Personalized Learning:</strong> Models can be personalized to individual users or devices, improving accuracy and relevance.</li> </ul> <p>In summary, federated learning offers superior adaptability and real-time learning capabilities in 2025. Its ability to continuously learn and adapt to new data makes it ideal for applications that require personalization, dynamic decision-making, and real-time responsiveness.</p> <h2>Use Cases and Applications</h2> <p>The choice between federated learning and centralized learning depends on the specific use case and application. Centralized learning is well-suited for scenarios where data privacy is not a primary concern and computational resources are abundant. Federated learning is ideal for applications that require data privacy, scalability, and real-time adaptability. As we approach 2025, it&#8217;s essential to understand the specific scenarios where each approach excels.</p> <p>Let&#8217;s explore some common use cases and applications for centralized learning and federated learning.</p> <h3>Centralized Learning Use Cases</h3> <p>Centralized learning remains relevant in several scenarios:</p> <ul> <li><strong>Medical Diagnosis:</strong> Training diagnostic models on aggregated medical records (with appropriate anonymization).</li> <li><strong>Financial Modeling:</strong> Building predictive models based on historical financial data.</li> <li><strong>Fraud Detection:</strong> Identifying fraudulent transactions using centralized transaction data.</li> </ul> <p>Federated Learning Use Cases</p> <p>Federated learning is particularly well-suited for:</p> <ul> <li><strong>Healthcare:</strong> Training models for personalized medicine using patient data from multiple hospitals.</li> <li><strong>Finance:</strong> Developing fraud detection models using transaction data from different banks without sharing raw data.</li> <li><strong>IoT:</strong> Building predictive maintenance models for industrial equipment using sensor data from numerous devices.</li> </ul> <p>In conclusion, both centralized learning and federated learning have their strengths and weaknesses. The optimal approach depends on the specific requirements of the application, including data privacy, scalability, computational resources, and the need for real-time adaptability. As we move closer to 2025, a hybrid approach that combines the best of both worlds may become increasingly common.</p> <p><!-- Início da área da tabela minimalista --></p> <div style="text-align: center; margin-bottom: 20px; margin-top: 20px;"> <!-- Tabela principal --></p> <table style="border-collapse: collapse; margin: 0 auto; display: inline-table; border: 1px solid #000000; font-family: Arial, sans-serif; font-size: 14px;"> <!-- Cabeçalho da Tabela --></p> <thead> <tr style="background-color: #000000; color: white;"> <th style="text-align: center; width: 30%; border: 1px solid #000000; padding: 8px;">Key Aspect</th> <th style="border: 1px solid #000000; padding: 8px; text-align: center;">Brief Description</th> </tr> </thead> <p> <!-- Corpo da Tabela --></p> <tbody> <!-- Linha 1 --></p> <tr style="border-bottom: 1px solid #000000; background-color: #f9f9f9;"> <td style="font-weight: bold; text-align: center; border: 1px solid #000000; padding: 8px;">🔒 Data Privacy</td> <td style="border: 1px solid #000000; padding: 8px;">Federated Learning keeps data on devices, unlike Centralized Learning.</td> </tr> <p> <!-- Linha 2 --></p> <tr style="border-bottom: 1px solid #000000;"> <td style="font-weight: bold; text-align: center; border: 1px solid #000000; padding: 8px;">🚀 Scalability</td> <td style="border: 1px solid #000000;">Federated Learning scales better with distributed data and resources.</td> </tr> <p> <!-- Linha 3 --></p> <tr style="border-bottom: 1px solid #000000; background-color: #f9f9f9;"> <td style="font-weight: bold; text-align: center; border: 1px solid #000000; padding: 8px;">⚙️ Adaptability</td> <td style="border: 1px solid #000000; padding: 8px;">Federated Learning adapts faster to new data and evolving conditions.</td> </tr> <p> <!-- Linha 4 (Opcional, se necessário para o tópico --></p> <tr style="background-color: #ffffff;"> <td style="font-weight: bold; text-align: center; border: 1px solid #000000; padding: 8px;">🎯 Accuracy</td> <td style="border: 1px solid #000000; padding: 8px;">Centralized Learning traditionally offers higher accuracy, but Federated is catching up.</td> </tr> </tbody> </table> </div> <p><!-- Fim da tabela minimalista --></p> <h2>FAQ</h2> <p><!-- FAQ Item 1 --></p> <div class="faq-item"> <div class="faq-question">What is federated learning?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-1" class="faq-answer"> <p>Federated learning is a decentralized machine learning approach that trains models across a network of devices without exchanging raw data. Each device trains the model locally, and only model updates are shared with a central server for aggregation.</p> </div> </div> <p><!-- FAQ Item 2 --></p> <div class="faq-item"> <div class="faq-question">What are the main benefits of federated learning?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-2" class="faq-answer"> <p>The main benefits include enhanced privacy, improved scalability, and regulatory compliance. Data remains on the device, minimizing the risk of data breaches. Training is distributed, reducing the load on central servers. It&#8217;s easier to comply with data privacy regulations.</p> </div> </div> <p><!-- FAQ Item 3 --></p> <div class="faq-item"> <div class="faq-question">How does centralized learning compare to federated learning in terms of data privacy?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-3" class="faq-answer"> <p>Centralized learning involves consolidating data in one place, making it a target for potential breaches. Federated learning, on the other hand, keeps data decentralized, reducing this risk significantly and enhancing data privacy.</p> </div> </div> <p><!-- FAQ Item 4 --></p> <div class="faq-item"> <div class="faq-question">What are the computational resource requirements for each approach?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-4" class="faq-answer"> <p>Centralized learning requires powerful central servers to process large datasets. Federated learning leverages the computational capabilities of distributed devices. This reduces the strain on central resources and enables real-time processing.</p> </div> </div> <p><!-- FAQ Item 5 --></p> <div class="faq-item"> <div class="faq-question">In what scenarios is federated learning most useful?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-5" class="faq-answer"> <p>Federated learning is most useful in applications that require data privacy, scalability, and real-time adaptability. It&#8217;s ideal for industries like healthcare, finance, and IoT, where data is distributed and sensitive.</p> </div> </div> <h2>Conclusion</h2> <p>In conclusion, understanding the key differences between federated learning and centralized learning is crucial for AI model development in 2025. While centralized learning has its place, federated learning is emerging as a powerful alternative that addresses data privacy concerns, enhances scalability, and enables real-time adaptability. As AI continues to evolve, the ability to leverage both approaches strategically will be essential for organizations seeking to stay ahead of the curve.</p> <p><!-- Início da área do botão --></p> <div style="text-align: center;"><a href="/category/ai-research-&amp;-development" style="background-color: #000000; color: white; border: 1px solid #000000; cursor: pointer; padding: 8px 16px; border-radius: 8px; display: inline-block; margin: 0 auto; text-align: center; white-space: nowrap; transition: background-color 0.3s ease; text-decoration: none;" class="broken_link">Read more content</a></div> <p><!-- Fim da área do botão --></p> </div> </div> </div> <div class="author-bio-section"> <div class="author-avatar"> <img alt='' src='https://secure.gravatar.com/avatar/0c41178f1747957ea608c344f8b50b0c200f2e5fd06488356d8e998ef2c263ec?s=80&#038;d=mm&#038;r=g' srcset='https://secure.gravatar.com/avatar/0c41178f1747957ea608c344f8b50b0c200f2e5fd06488356d8e998ef2c263ec?s=160&#038;d=mm&#038;r=g 2x' class='avatar avatar-80 photo' height='80' width='80' decoding='async'/> </div> <div class="author-info"> <h3 class="author-name">Emilly Correa</h3> <p class="author-description">Emilly Correa has a degree in journalism and a postgraduate degree in Digital Marketing, specializing in Content Production for Social Media. With experience in copywriting and blog management, she combines her passion for writing with digital engagement strategies. She has worked in communications agencies and now dedicates herself to producing informative articles and trend analyses.</p> </div> </div> </div> </div> </div> <div class="section section-more"> <div class="container"> <div class="crp_related "><div class="row"><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/regulating-ai-navigating-the-complex-challenges/" class="crp_link post-715"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_14_1753772620_93b7167a_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="Regulating AI: Navigating the Complex Challenges - Cover Image" style="" title="Regulating AI: Navigating the Complex Challenges" decoding="async" fetchpriority="high" /></figure><span class="crp_title">Regulating AI: Navigating the Complex Challenges</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/gdpr-vs-us-ai-accountability-act-key-differences-explained/" class="crp_link post-672"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_14_1753760010_6fdbe2be_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="GDPR vs. US AI Accountability Act: Key Differences Explained - Cover Image" style="" title="GDPR vs. US AI Accountability Act: Key Differences Explained" decoding="async" loading="lazy" /></figure><span class="crp_title">GDPR vs. US AI Accountability Act: Key Differences Explained</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/how-ai-can-drive-social-good-real-world-applications-benefits/" class="crp_link post-680"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_14_1753770191_98d3702b_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="How AI Can Drive Social Good: Real-World Applications &amp; Benefits - Cover Image" style="" title="How AI Can Drive Social Good: Real-World Applications &amp; Benefits" decoding="async" loading="lazy" /></figure><span class="crp_title">How AI Can Drive Social Good: Real-World&hellip;</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/ai-driven-risk-management-protecting-us-businesses-from-threats/" class="crp_link post-644"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_13_1753751301_6a199de5_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="AI-Driven Risk Management: Protecting US Businesses from Threats - Cover Image" style="" title="AI-Driven Risk Management: Protecting US Businesses from Threats" decoding="async" loading="lazy" /></figure><span class="crp_title">AI-Driven Risk Management: Protecting US Businesses&hellip;</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/ai-ethics-in-2025-trends-predictions-and-governance/" class="crp_link post-708"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_14_1753772621_dd6e9114_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="AI Ethics in 2025: Trends, Predictions, and Governance - Cover Image" style="" title="AI Ethics in 2025: Trends, Predictions, and Governance" decoding="async" loading="lazy" /></figure><span class="crp_title">AI Ethics in 2025: Trends, Predictions, and Governance</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/ai-in-us-healthcare-regulations-and-future-landscape-in-2025/" class="crp_link post-792"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_15_1753773358_ebc5cefd_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="AI in US Healthcare: Regulations and Future Landscape in 2025 - Cover Image" style="" title="AI in US Healthcare: Regulations and Future Landscape in 2025" decoding="async" loading="lazy" /></figure><span class="crp_title">AI in US Healthcare: Regulations and Future&hellip;</span></a></div></div><div class="crp_clear"></div></div> </div> </div> </article> </div> <!-- END inner --> <script src="https://cdn.jsdelivr.net/npm/swiper@10/swiper-bundle.min.js"></script> <script> document.addEventListener('DOMContentLoaded', function () { const swiperBenefits = new Swiper('.benefits-swiper', { loop: false, spaceBetween: 16, pagination: { el: '.swiper-benefits-pagination', clickable: true }, breakpoints: { 0: { slidesPerView: 1 }, 768: { slidesPerView: 3 }, 1024: { slidesPerView: 5 } } }); }); </script> <script> document.addEventListener('DOMContentLoaded', function () { const postSwiper = new Swiper('.home-posts-mobile', { loop: false, spaceBetween: 30, slidesPerView: 1, centeredSlides: true, initialSlide: 0, autoHeight: false, pagination: { el: '.home-posts-mobile .swiper-pagination', clickable: true }, navigation: { nextEl: '.home-posts-mobile .swiper-button-next', prevEl: '.home-posts-mobile .swiper-button-prev', }, breakpoints: { 480: { slidesPerView: 1, }, 640: { slidesPerView: 1, }, 768: { slidesPerView: 1, } } }); }); </script> <script> document.addEventListener('DOMContentLoaded', function () { document.querySelectorAll('.search-toggle').forEach(function (toggle) { toggle.addEventListener('click', function (e) { const container = toggle.closest('.search-container'); container.classList.toggle('open'); e.stopPropagation(); }); }); document.addEventListener('click', function (e) { document.querySelectorAll('.search-container.open').forEach(function (container) { if (!container.contains(e.target)) { container.classList.remove('open'); } }); }); }); </script> <footer class="footer-custom" style="background-color: #0d47a1; color: #ffffff;"> <div class="container"> <div class="footer-columns" style="padding: 60px 0;"> <!-- Logo + texto --> <div class="footer-logo-col" style="text-align: center; margin-bottom: 30px;"> <img src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/artificialintelligencesolutionss.com_.png" alt="Logo" width="180" style="margin: 0 auto 20px;"> </div> <!-- Grupo de colunas --> <div class="footer-columns-group"> <div class="footer-col"> <h4>Company</h4> <ul id="menu-menu-principal-1" class="footer-menu" itemscope itemtype="http://www.schema.org/SiteNavigationElement"><li class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-569"><a href="https://artificialintelligencesolutionss.com/category/ai-business-applications/">AI Business Applications</a></li> <li class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-570"><a href="https://artificialintelligencesolutionss.com/category/ai-ethics-e-governance/">AI Ethics &amp; Governance</a></li> <li class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-571"><a href="https://artificialintelligencesolutionss.com/category/ai-in-healthcare/">AI in Healthcare</a></li> <li class="menu-item menu-item-type-taxonomy menu-item-object-category current-post-ancestor current-menu-parent current-post-parent menu-item-572"><a href="https://artificialintelligencesolutionss.com/category/ai-research-e-development/">AI Research &amp; Development</a></li> </ul> </div> <div class="footer-col"> <h4>Legal</h4> <ul id="menu-menu-rodape" class="footer-menu" itemscope itemtype="http://www.schema.org/SiteNavigationElement"><li id="menu-item-565" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-565"><a href="https://artificialintelligencesolutionss.com/about-us/">About Us</a></li> <li id="menu-item-566" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-566"><a href="https://artificialintelligencesolutionss.com/contact/">Contact</a></li> <li id="menu-item-567" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-567"><a href="https://artificialintelligencesolutionss.com/privacy-policy/">Privacy Policy</a></li> <li id="menu-item-568" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-568"><a href="https://artificialintelligencesolutionss.com/terms-and-conditions/">Terms and Conditions</a></li> </ul> </div> </div> <!-- Coluna de Transparência --> <div class="footer-col transparency"> <h4>Disclaimer</h4> <p>The information provided on artificialintelligencesolutionss.com is for informational purposes only. We make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability, or availability with respect to the website or the information contained on the website. We are not liable for any losses or damages arising from the use of this information.</p> </div> </div> </div> <!-- Linha separadora de tela cheia --> <div style="width: 100%; border-top: 1px solid #1565c0;"></div> <!-- Container final de copyright --> <div style="width: 100%; background-color: #0a3880; padding: 12px 0; color: #ffffff; text-align: center;"> <div class="container"> <p style="font-size: 12px; margin: 0;">© 2025 artificialintelligencesolutionss.com. All rights reserved.</p> <p style="font-size: 11px; margin: 5px 0 0 0; opacity: 0.8;"></p> </div> </div> </footer> <script type="speculationrules"> {"prefetch":[{"source":"document","where":{"and":[{"href_matches":"\/*"},{"not":{"href_matches":["\/wp-*.php","\/wp-admin\/*","\/wp-content\/uploads\/*","\/wp-content\/*","\/wp-content\/plugins\/*","\/wp-content\/themes\/ddmp-theme\/*","\/*\\?(.+)"]}},{"not":{"selector_matches":"a[rel~=\"nofollow\"]"}},{"not":{"selector_matches":".no-prefetch, .no-prefetch a"}}]},"eagerness":"conservative"}]} </script> <script id="ckyBannerTemplate" type="text/template"><div class="cky-overlay cky-hide"></div><div class="cky-btn-revisit-wrapper cky-revisit-hide" data-cky-tag="revisit-consent" data-tooltip="Consent Preferences" style="background-color:#0056A7"> <button class="cky-btn-revisit" aria-label="Consent Preferences"> <img src="https://artificialintelligencesolutionss.com/wp-content/plugins/cookie-law-info/lite/frontend/images/revisit.svg" alt="Revisit consent button"> </button></div><div class="cky-consent-container cky-hide" tabindex="0"> <div class="cky-consent-bar" data-cky-tag="notice" style="background-color:#FFFFFF;border-color:#F4F4F4"> <div class="cky-notice"> <p class="cky-title" role="heading" aria-level="1" data-cky-tag="title" style="color:#212121">We value your privacy</p><div class="cky-notice-group"> <div class="cky-notice-des" data-cky-tag="description" style="color:#212121"> <p>We use cookies to enhance your browsing experience, serve personalised ads or content, and analyse our traffic. By clicking "Accept All", you consent to our use of cookies.</p> </div><div class="cky-notice-btn-wrapper" data-cky-tag="notice-buttons"> <button class="cky-btn cky-btn-customize" aria-label="Customise" data-cky-tag="settings-button" style="color:#1863DC;background-color:transparent;border-color:#1863DC">Customise</button> <button class="cky-btn cky-btn-reject" aria-label="Reject All" data-cky-tag="reject-button" style="color:#1863DC;background-color:transparent;border-color:#1863DC">Reject All</button> <button class="cky-btn cky-btn-accept" aria-label="Accept All" data-cky-tag="accept-button" style="color:#FFFFFF;background-color:#1863DC;border-color:#1863DC">Accept All</button> </div></div></div></div></div><div class="cky-modal" tabindex="0"> <div class="cky-preference-center" data-cky-tag="detail" style="color:#212121;background-color:#FFFFFF;border-color:#F4F4F4"> <div class="cky-preference-header"> <span class="cky-preference-title" role="heading" aria-level="1" data-cky-tag="detail-title" style="color:#212121">Customise Consent Preferences</span> <button class="cky-btn-close" aria-label="[cky_preference_close_label]" data-cky-tag="detail-close"> <img src="https://artificialintelligencesolutionss.com/wp-content/plugins/cookie-law-info/lite/frontend/images/close.svg" alt="Close"> </button> </div><div class="cky-preference-body-wrapper"> <div class="cky-preference-content-wrapper" data-cky-tag="detail-description" style="color:#212121"> <p>We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.</p><p>The cookies that are categorised as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. </p><p>We also use third-party cookies that help us analyse how you use this website, store your preferences, and provide the content and advertisements that are relevant to you. These cookies will only be stored in your browser with your prior consent.</p><p>You can choose to enable or disable some or all of these cookies but disabling some of them may affect your browsing experience.</p> </div><div class="cky-accordion-wrapper" data-cky-tag="detail-categories"> <div class="cky-accordion" id="ckyDetailCategorynecessary"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Necessary" data-cky-tag="detail-category-title" style="color:#212121">Necessary</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchnecessary"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div><div class="cky-accordion" id="ckyDetailCategoryfunctional"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Functional" data-cky-tag="detail-category-title" style="color:#212121">Functional</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchfunctional"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div><div class="cky-accordion" id="ckyDetailCategoryanalytics"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Analytics" data-cky-tag="detail-category-title" style="color:#212121">Analytics</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchanalytics"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div><div class="cky-accordion" id="ckyDetailCategoryperformance"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Performance" data-cky-tag="detail-category-title" style="color:#212121">Performance</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchperformance"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Performance cookies are used to understand and analyse the key performance indexes of the website which helps in delivering a better user experience for the visitors.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div><div class="cky-accordion" id="ckyDetailCategoryadvertisement"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Advertisement" data-cky-tag="detail-category-title" style="color:#212121">Advertisement</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchadvertisement"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Advertisement cookies are used to provide visitors with customised advertisements based on the pages you visited previously and to analyse the effectiveness of the ad campaigns.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div> </div></div><div class="cky-footer-wrapper"> <span class="cky-footer-shadow"></span> <div class="cky-prefrence-btn-wrapper" data-cky-tag="detail-buttons"> <button class="cky-btn cky-btn-reject" aria-label="Reject All" data-cky-tag="detail-reject-button" style="color:#1863DC;background-color:transparent;border-color:#1863DC"> Reject All </button> <button class="cky-btn cky-btn-preferences" aria-label="Save My Preferences" data-cky-tag="detail-save-button" style="color:#1863DC;background-color:transparent;border-color:#1863DC"> Save My Preferences </button> <button class="cky-btn cky-btn-accept" aria-label="Accept All" data-cky-tag="detail-accept-button" style="color:#ffffff;background-color:#1863DC;border-color:#1863DC"> Accept All </button> </div></div></div></div></script><script type="text/javascript" src="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/js/search-toggle.js?ver=1753802936" id="search-toggle-js"></script> </body> </html>