The latest trends in computer vision research for object detection and recognition in the US include advancements in deep learning models, the use of transformer networks, improvements in few-shot learning, and the development of more robust and explainable AI systems.

Object recognition and detection have become integral to numerous applications, from autonomous vehicles to medical imaging. What are the Latest Trends in Computer Vision Research for Object Detection and Recognition in the US? This article delves into the cutting-edge advancements shaping this field in the United States.

Advancements in Deep Learning Models for Object Detection

Deep learning has revolutionized computer vision, and object detection is no exception. Recent research focuses on refining existing models and developing new architectures that can handle complex scenes and datasets more effectively.

Refining Convolutional Neural Networks (CNNs)

CNNs remain a foundational element in object detection. Current trends involve optimizing CNN architectures to improve accuracy and efficiency. This includes techniques like network pruning and quantization, which reduce computational costs without significantly impacting performance. Researchers are also exploring novel CNN designs that incorporate attention mechanisms to focus on the most relevant features in an image.

The Rise of Capsule Networks

Capsule networks offer an alternative to traditional CNNs by preserving hierarchical relationships between object parts. Unlike CNNs, which can struggle with variations in viewpoint and pose, capsule networks are designed to be more robust. Ongoing research aims to enhance the performance of capsule networks in real-world object detection tasks, particularly in cluttered environments.

A graphical representation of a Capsule Network architecture, showcasing capsules detecting object parts and their relationships through dynamic routing, highlighted with color-coded layers and directional arrows indicating information flow.

  • Improved accuracy in identifying objects with varying orientations.
  • Enhanced robustness to adversarial attacks.
  • Better handling of occluded objects in crowded scenes.

Deep learning models are continually being refined to address the challenges of object detection. By focusing on efficiency, robustness, and hierarchical understanding, researchers are pushing the boundaries of what’s achievable in this domain.

Transformer Networks in Computer Vision

Transformer networks, initially developed for natural language processing, have made significant inroads into computer vision. Their ability to capture long-range dependencies and contextual information has proven valuable for object detection and recognition.

Adapting Transformers for Object Detection

One key trend is adapting transformer architectures for direct object detection. Models like DETR (DEtection TRansformer) eliminate the need for hand-designed components like anchor boxes, simplifying the detection pipeline. These models leverage the attention mechanism to relate different parts of an image and predict object bounding boxes and class labels directly.

Vision Transformers (ViTs)

Vision Transformers (ViTs) divide an image into patches and treat them as tokens, similar to words in a sentence. This allows the transformer to capture global context and relationships between different image regions. ViTs have shown promising results in various computer vision tasks, including object detection, and are an active area of research.

Vision Transformers and DETR models are revolutionizing how object detection is approached, offering greater flexibility and performance. These networks provide scalable solutions in computer vision tasks by leveraging self-attention mechanisms.

  • Global context understanding through self-attention.
  • Elimination of hand-designed components.
  • Scalability to large datasets and high-resolution images.

Transformer networks represent a paradigm shift in computer vision, offering new ways to approach object detection and recognition. As research continues, these models are expected to play an increasingly important role in the field.

Few-Shot Learning and Object Detection

One of the major challenges in object detection is the need for large amounts of labeled data. Few-shot learning aims to address this issue by enabling models to learn from only a few examples.

Meta-Learning Approaches

Meta-learning, or “learning to learn,” is a popular approach for few-shot object detection. Meta-learning models are trained on a variety of tasks, enabling them to quickly adapt to new tasks with limited data. These models often use techniques like metric learning or model-agnostic meta-learning (MAML) to facilitate rapid adaptation.

Transfer Learning Techniques

Transfer learning involves leveraging knowledge gained from pre-trained models on large datasets to improve performance on new, related tasks. In the context of few-shot object detection, transfer learning can help models generalize from a few examples by transferring features and representations learned from other object categories. Fine-tuning pre-trained models on small datasets is a common strategy.

Few-shot learning allows computer vision models to generalize based on only very few examples. Transfer learning techniques are vital for quickly adapting object detection models to new tasks.

A visual comparison illustrating the difference between traditional machine learning requiring thousands of labeled images, and few-shot learning achieving similar accuracy with only a handful of labeled images per object category.

  • Rapid adaptation to new object categories.
  • Reduced data labeling costs.
  • Improved generalization from limited data.

Few-shot learning represents a promising direction for object detection, particularly in scenarios where labeled data is scarce. By leveraging meta-learning and transfer learning techniques, researchers are making progress towards more data-efficient object detection systems.

Explainable AI (XAI) in Object Detection

As object detection systems become more complex and integrated into critical applications, the need for explainability becomes paramount. Explainable AI (XAI) aims to make these systems more transparent and understandable to humans.

Attention Visualization Techniques

Attention visualization techniques provide insights into which parts of an image a model is attending to when making a prediction. These techniques often involve generating heatmaps that highlight the most relevant regions. By visualizing attention maps, users can gain a better understanding of why a model made a particular decision.

Saliency Maps and Gradient-Based Methods

Saliency maps and gradient-based methods are another class of XAI techniques that highlight the most important pixels in an image for a given prediction. These methods compute the gradient of the output with respect to the input, providing a sensitivity map that indicates which pixels have the largest impact on the model’s decision. Integrated Gradients and Grad-CAM are examples of this kind of technique.

Attention visualization and saliency maps are two notable ways of achieving Explainable AI (XAI). It’s important to know why a model made a certain decision; making models more transparent to users is essential, especially in critical applications.

  • Increased trust in AI systems.
  • Improved model debugging and refinement.
  • Compliance with regulatory requirements.

XAI is essential for ensuring that object detection systems are reliable, accountable, and trustworthy. By making these systems more transparent, researchers are paving the way for their broader adoption in sensitive applications.

Robustness to Adversarial Attacks

Adversarial attacks pose a significant threat to object detection systems. These attacks involve introducing small, carefully crafted perturbations to input images that can cause a model to make incorrect predictions. Research in this area focuses on developing methods to defend against these attacks and improve the robustness of object detection systems.

Adversarial Training

Adversarial training involves training a model on both clean and adversarially perturbed examples. By exposing the model to adversarial attacks during training, it can learn to be more resilient to these attacks. This technique has been shown to be effective in improving the robustness of object detection systems.

Defensive Distillation

Defensive distillation is another technique for enhancing the robustness of object detection models. This method involves training a “student” model to mimic the behavior of a “teacher” model that has been regularized to be more robust. The student model inherits the robustness of the teacher model while maintaining good performance on clean examples.

Adversarial training and defensive distillation strategies help to defend against adversarial attacks. Adversarial attacks cause a model to make incorrect predictions, so improving the robustness of object detection systems is critical.

  • Increased reliability in security-critical applications.
  • Protection against malicious manipulation.
  • Improved performance in noisy or uncertain environments.

Robustness to adversarial attacks is a critical consideration for object detection systems, particularly in security-sensitive applications. By developing and deploying robust models, researchers can help ensure the safety and reliability of these systems.

Real-Time Object Detection for Edge Devices

There is growing interest in deploying object detection models on edge devices, such as smartphones and embedded systems. This enables real-time object detection without the need for cloud connectivity. However, these devices have limited computational resources, posing significant challenges for model design and optimization.

Model Compression Techniques

Model compression techniques, such as network pruning, quantization, and knowledge distillation, are essential for deploying object detection models on edge devices. Network pruning involves removing less important connections from a network, reducing its size and computational complexity. Quantization reduces the precision of the model’s weights and activations, further reducing memory footprint and computational requirements.

Hardware Acceleration

Hardware acceleration, such as using specialized processors like GPUs and TPUs, can significantly improve the performance of object detection models on edge devices. These processors are designed to efficiently perform the computations required for deep learning, enabling real-time object detection in resource-constrained environments.

Deploying object detection models on edge devices means that there is real-time object detection without reliance on cloud connectivity. Model compression and hardware acceleration are key to keeping up with edge device computational limitations.

  • Low-latency object detection for real-time applications.
  • Reduced reliance on cloud connectivity.
  • Increased privacy and security.

Real-time object detection on edge devices is a key enabler for a wide range of applications, from autonomous robotics to smart surveillance. By developing efficient models and leveraging hardware acceleration, researchers and developers are making this technology more accessible and practical.

Key Area Brief Description
🚀 Deep Learning Improving accuracy and efficiency through refined CNNs and capsule networks.
🤖 Transformer Networks Adapting transformers for direct object detection, leveraging self-attention.
🔬 Few-Shot Learning Enabling models to learn from only a few examples through meta-learning.
🛡️ Adversarial Robustness Developing methods to defend against adversarial attacks.

FAQ Section

What are capsule networks, and why are they important?

Capsule networks are a type of neural network that preserve hierarchical relationships between object parts. Unlike traditional CNNs, capsule networks are robust to variations in viewpoint and pose, making them valuable for object detection in complex environments.

How are transformer networks used in computer vision?

Transformer networks, originally developed for natural language processing, have been adapted for computer vision to capture long-range dependencies and contextual information. Models like DETR and ViT are used for object detection and recognition.

What is few-shot learning, and why is it relevant to object detection?

Few-shot learning enables models to learn from only a small number of examples. This is particularly useful in scenarios where labeled data is scarce, allowing for rapid adaptation to new object categories with limited data labeling costs.

How does Explainable AI (XAI) improve object detection systems?

XAI techniques, such as attention visualization and saliency maps, make object detection systems more transparent and understandable to humans. This increases trust in AI systems and improves model debugging and compliance with regulatory requirements.

Why is robustness to adversarial attacks important in object detection?

Adversarial attacks can cause object detection systems to make incorrect predictions by introducing small perturbations to input images. Robustness is crucial to ensure reliability in security-critical applications and protect against malicious manipulation.

Conclusion

The field of computer vision in the US is rapidly advancing, with significant trends in deep learning models, transformer networks, few-shot learning, explainable AI, and adversarial robustness. These advancements are paving the way for more accurate, efficient, and reliable object detection systems in a wide range of applications.

Emilly Correa

Emilly Correa has a degree in journalism and a postgraduate degree in Digital Marketing, specializing in Content Production for Social Media. With experience in copywriting and blog management, she combines her passion for writing with digital engagement strategies. She has worked in communications agencies and now dedicates herself to producing informative articles and trend analyses.

<!doctype html> <html lang="en-US"> <head> <link rel='preload' as='script' href='https://securepubads.g.doubleclick.net/tag/js/gpt.js' /> <!-- wrapper --> <!-- wrapper --> <meta charset="UTF-8" /> <title>Latest Trends in Computer Vision for Object Detection in the US - ARTIFICIAL INTELLIGENCE SOLUTIONSS</title> <meta http-equiv="X-UA-Compatible" content="IE=Edge"> <meta name="viewport" content="width=device-width, initial-scale=1"> <!-- search console verification --> <!-- search console verification --> <meta name="author" content="Emilly Correa"> <link rel="icon" href="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1.png"> <link rel="preconnect" href="https://fonts.googleapis.com"> <link rel="preconnect" href="https://fonts.gstatic.com" crossorigin> <link href="https://fonts.googleapis.com/css2?family=PT+Sans:wght@400;700&display=swap" rel="stylesheet"> <link rel="stylesheet" media="all" href="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/css/bootstrap.min.css?ver=1753802936"> <link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/swiper@10/swiper-bundle.min.css" /> <!-- jQuery (necessário para Bootstrap 4 ou inferior) --> <script src="https://code.jquery.com/jquery-3.6.0.min.js"></script> <!-- Bootstrap JS (versão compatível com seu CSS atual) --> <script src="https://cdn.jsdelivr.net/npm/[email protected]/dist/js/bootstrap.bundle.min.js"></script> <link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.4/css/all.min.css"> <meta name='robots' content='index, follow, max-image-preview:large, max-snippet:-1, max-video-preview:-1' /> <style>img:is([sizes="auto" i], [sizes^="auto," i]) { contain-intrinsic-size: 3000px 1500px }</style> <!-- This site is optimized with the Yoast SEO plugin v25.6 - https://yoast.com/wordpress/plugins/seo/ --> <link rel="canonical" href="https://artificialintelligencesolutionss.com/latest-trends-in-computer-vision-for-object-detection-in-the-us/" /> <meta property="og:locale" content="en_US" /> <meta property="og:type" content="article" /> <meta property="og:title" content="Latest Trends in Computer Vision for Object Detection in the US - ARTIFICIAL INTELLIGENCE SOLUTIONSS" /> <meta property="og:description" content="The latest trends in computer vision research for object detection and recognition in the US include advancements in deep learning models, the use of transformer networks, improvements in few-shot learning, and the development of more robust and explainable AI systems. Object recognition and detection have become integral to numerous applications, from autonomous vehicles to medical [&hellip;]" /> <meta property="og:url" content="https://artificialintelligencesolutionss.com/latest-trends-in-computer-vision-for-object-detection-in-the-us/" /> <meta property="og:site_name" content="ARTIFICIAL INTELLIGENCE SOLUTIONSS" /> <meta property="article:published_time" content="2025-02-15T16:15:00+00:00" /> <meta property="article:modified_time" content="2025-08-01T17:35:08+00:00" /> <meta property="og:image" content="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774490_67c196ed_cover.jpg" /> <meta property="og:image:width" content="626" /> <meta property="og:image:height" content="417" /> <meta property="og:image:type" content="image/jpeg" /> <meta name="author" content="Emilly Correa" /> <meta name="twitter:card" content="summary_large_image" /> <meta name="twitter:label1" content="Written by" /> <meta name="twitter:data1" content="Emilly Correa" /> <meta name="twitter:label2" content="Est. reading time" /> <meta name="twitter:data2" content="9 minutes" /> <script type="application/ld+json" class="yoast-schema-graph">{"@context":"https://schema.org","@graph":[{"@type":"WebPage","@id":"https://artificialintelligencesolutionss.com/latest-trends-in-computer-vision-for-object-detection-in-the-us/","url":"https://artificialintelligencesolutionss.com/latest-trends-in-computer-vision-for-object-detection-in-the-us/","name":"Latest Trends in Computer Vision for Object Detection in the US - ARTIFICIAL INTELLIGENCE SOLUTIONSS","isPartOf":{"@id":"https://artificialintelligencesolutionss.com/#website"},"primaryImageOfPage":{"@id":"https://artificialintelligencesolutionss.com/latest-trends-in-computer-vision-for-object-detection-in-the-us/#primaryimage"},"image":{"@id":"https://artificialintelligencesolutionss.com/latest-trends-in-computer-vision-for-object-detection-in-the-us/#primaryimage"},"thumbnailUrl":"https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774490_67c196ed_cover.jpg","datePublished":"2025-02-15T16:15:00+00:00","dateModified":"2025-08-01T17:35:08+00:00","author":{"@id":"https://artificialintelligencesolutionss.com/#/schema/person/bb1a858770181f28b75df4752addef77"},"breadcrumb":{"@id":"https://artificialintelligencesolutionss.com/latest-trends-in-computer-vision-for-object-detection-in-the-us/#breadcrumb"},"inLanguage":"en-US","potentialAction":[{"@type":"ReadAction","target":["https://artificialintelligencesolutionss.com/latest-trends-in-computer-vision-for-object-detection-in-the-us/"]}]},{"@type":"ImageObject","inLanguage":"en-US","@id":"https://artificialintelligencesolutionss.com/latest-trends-in-computer-vision-for-object-detection-in-the-us/#primaryimage","url":"https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774490_67c196ed_cover.jpg","contentUrl":"https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774490_67c196ed_cover.jpg","width":626,"height":417,"caption":"Latest Trends in Computer Vision for Object Detection in the US - Cover Image"},{"@type":"BreadcrumbList","@id":"https://artificialintelligencesolutionss.com/latest-trends-in-computer-vision-for-object-detection-in-the-us/#breadcrumb","itemListElement":[{"@type":"ListItem","position":1,"name":"Início","item":"https://artificialintelligencesolutionss.com/"},{"@type":"ListItem","position":2,"name":"Latest Trends in Computer Vision for Object Detection in the US"}]},{"@type":"WebSite","@id":"https://artificialintelligencesolutionss.com/#website","url":"https://artificialintelligencesolutionss.com/","name":"ARTIFICIALINTELLIGENCESOLUTIONSS.COM @ DATA2","description":"","potentialAction":[{"@type":"SearchAction","target":{"@type":"EntryPoint","urlTemplate":"https://artificialintelligencesolutionss.com/?s={search_term_string}"},"query-input":{"@type":"PropertyValueSpecification","valueRequired":true,"valueName":"search_term_string"}}],"inLanguage":"en-US"},{"@type":"Person","@id":"https://artificialintelligencesolutionss.com/#/schema/person/bb1a858770181f28b75df4752addef77","name":"Emilly Correa","image":{"@type":"ImageObject","inLanguage":"en-US","@id":"https://artificialintelligencesolutionss.com/#/schema/person/image/","url":"https://secure.gravatar.com/avatar/0c41178f1747957ea608c344f8b50b0c200f2e5fd06488356d8e998ef2c263ec?s=96&d=mm&r=g","contentUrl":"https://secure.gravatar.com/avatar/0c41178f1747957ea608c344f8b50b0c200f2e5fd06488356d8e998ef2c263ec?s=96&d=mm&r=g","caption":"Emilly Correa"},"description":"Emilly Correa has a degree in journalism and a postgraduate degree in Digital Marketing, specializing in Content Production for Social Media. With experience in copywriting and blog management, she combines her passion for writing with digital engagement strategies. She has worked in communications agencies and now dedicates herself to producing informative articles and trend analyses.","url":"https://artificialintelligencesolutionss.com/author/emilly/"}]}</script> <!-- / Yoast SEO plugin. --> <link rel='dns-prefetch' href='//fonts.googleapis.com' /> <link rel="alternate" type="application/rss+xml" title="ARTIFICIAL INTELLIGENCE SOLUTIONSS &raquo; Latest Trends in Computer Vision for Object Detection in the US Comments Feed" href="https://artificialintelligencesolutionss.com/latest-trends-in-computer-vision-for-object-detection-in-the-us/feed/" /> <script type="text/javascript"> /* <![CDATA[ */ window._wpemojiSettings = {"baseUrl":"https:\/\/s.w.org\/images\/core\/emoji\/16.0.1\/72x72\/","ext":".png","svgUrl":"https:\/\/s.w.org\/images\/core\/emoji\/16.0.1\/svg\/","svgExt":".svg","source":{"concatemoji":"https:\/\/artificialintelligencesolutionss.com\/wp-includes\/js\/wp-emoji-release.min.js?ver=6.8.3"}}; /*! This file is auto-generated */ !function(s,n){var o,i,e;function c(e){try{var t={supportTests:e,timestamp:(new Date).valueOf()};sessionStorage.setItem(o,JSON.stringify(t))}catch(e){}}function p(e,t,n){e.clearRect(0,0,e.canvas.width,e.canvas.height),e.fillText(t,0,0);var t=new Uint32Array(e.getImageData(0,0,e.canvas.width,e.canvas.height).data),a=(e.clearRect(0,0,e.canvas.width,e.canvas.height),e.fillText(n,0,0),new Uint32Array(e.getImageData(0,0,e.canvas.width,e.canvas.height).data));return t.every(function(e,t){return e===a[t]})}function u(e,t){e.clearRect(0,0,e.canvas.width,e.canvas.height),e.fillText(t,0,0);for(var n=e.getImageData(16,16,1,1),a=0;a<n.data.length;a++)if(0!==n.data[a])return!1;return!0}function f(e,t,n,a){switch(t){case"flag":return n(e,"\ud83c\udff3\ufe0f\u200d\u26a7\ufe0f","\ud83c\udff3\ufe0f\u200b\u26a7\ufe0f")?!1:!n(e,"\ud83c\udde8\ud83c\uddf6","\ud83c\udde8\u200b\ud83c\uddf6")&&!n(e,"\ud83c\udff4\udb40\udc67\udb40\udc62\udb40\udc65\udb40\udc6e\udb40\udc67\udb40\udc7f","\ud83c\udff4\u200b\udb40\udc67\u200b\udb40\udc62\u200b\udb40\udc65\u200b\udb40\udc6e\u200b\udb40\udc67\u200b\udb40\udc7f");case"emoji":return!a(e,"\ud83e\udedf")}return!1}function g(e,t,n,a){var r="undefined"!=typeof WorkerGlobalScope&&self instanceof WorkerGlobalScope?new OffscreenCanvas(300,150):s.createElement("canvas"),o=r.getContext("2d",{willReadFrequently:!0}),i=(o.textBaseline="top",o.font="600 32px Arial",{});return e.forEach(function(e){i[e]=t(o,e,n,a)}),i}function t(e){var t=s.createElement("script");t.src=e,t.defer=!0,s.head.appendChild(t)}"undefined"!=typeof Promise&&(o="wpEmojiSettingsSupports",i=["flag","emoji"],n.supports={everything:!0,everythingExceptFlag:!0},e=new Promise(function(e){s.addEventListener("DOMContentLoaded",e,{once:!0})}),new Promise(function(t){var n=function(){try{var e=JSON.parse(sessionStorage.getItem(o));if("object"==typeof e&&"number"==typeof e.timestamp&&(new Date).valueOf()<e.timestamp+604800&&"object"==typeof e.supportTests)return e.supportTests}catch(e){}return null}();if(!n){if("undefined"!=typeof Worker&&"undefined"!=typeof OffscreenCanvas&&"undefined"!=typeof URL&&URL.createObjectURL&&"undefined"!=typeof Blob)try{var e="postMessage("+g.toString()+"("+[JSON.stringify(i),f.toString(),p.toString(),u.toString()].join(",")+"));",a=new Blob([e],{type:"text/javascript"}),r=new Worker(URL.createObjectURL(a),{name:"wpTestEmojiSupports"});return void(r.onmessage=function(e){c(n=e.data),r.terminate(),t(n)})}catch(e){}c(n=g(i,f,p,u))}t(n)}).then(function(e){for(var t in e)n.supports[t]=e[t],n.supports.everything=n.supports.everything&&n.supports[t],"flag"!==t&&(n.supports.everythingExceptFlag=n.supports.everythingExceptFlag&&n.supports[t]);n.supports.everythingExceptFlag=n.supports.everythingExceptFlag&&!n.supports.flag,n.DOMReady=!1,n.readyCallback=function(){n.DOMReady=!0}}).then(function(){return e}).then(function(){var e;n.supports.everything||(n.readyCallback(),(e=n.source||{}).concatemoji?t(e.concatemoji):e.wpemoji&&e.twemoji&&(t(e.twemoji),t(e.wpemoji)))}))}((window,document),window._wpemojiSettings); /* ]]> */ </script> <link rel='stylesheet' id='google-font-css' href='https://fonts.googleapis.com/css2?family=PT+Sans:wght@400;700&#038;display=swap' type='text/css' media='all' /> <style id='wp-emoji-styles-inline-css' type='text/css'> img.wp-smiley, img.emoji { display: inline !important; border: none !important; box-shadow: none !important; height: 1em !important; width: 1em !important; margin: 0 0.07em !important; vertical-align: -0.1em !important; background: none !important; padding: 0 !important; } </style> <link rel='stylesheet' id='wp-block-library-css' href='https://artificialintelligencesolutionss.com/wp-includes/css/dist/block-library/style.min.css?ver=6.8.3' type='text/css' media='all' /> <style id='classic-theme-styles-inline-css' type='text/css'> /*! This file is auto-generated */ .wp-block-button__link{color:#fff;background-color:#32373c;border-radius:9999px;box-shadow:none;text-decoration:none;padding:calc(.667em + 2px) calc(1.333em + 2px);font-size:1.125em}.wp-block-file__button{background:#32373c;color:#fff;text-decoration:none} </style> <style id='global-styles-inline-css' type='text/css'> :root{--wp--preset--aspect-ratio--square: 1;--wp--preset--aspect-ratio--4-3: 4/3;--wp--preset--aspect-ratio--3-4: 3/4;--wp--preset--aspect-ratio--3-2: 3/2;--wp--preset--aspect-ratio--2-3: 2/3;--wp--preset--aspect-ratio--16-9: 16/9;--wp--preset--aspect-ratio--9-16: 9/16;--wp--preset--color--black: #000000;--wp--preset--color--cyan-bluish-gray: #abb8c3;--wp--preset--color--white: #ffffff;--wp--preset--color--pale-pink: #f78da7;--wp--preset--color--vivid-red: #cf2e2e;--wp--preset--color--luminous-vivid-orange: #ff6900;--wp--preset--color--luminous-vivid-amber: #fcb900;--wp--preset--color--light-green-cyan: #7bdcb5;--wp--preset--color--vivid-green-cyan: #00d084;--wp--preset--color--pale-cyan-blue: #8ed1fc;--wp--preset--color--vivid-cyan-blue: #0693e3;--wp--preset--color--vivid-purple: #9b51e0;--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple: linear-gradient(135deg,rgba(6,147,227,1) 0%,rgb(155,81,224) 100%);--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan: linear-gradient(135deg,rgb(122,220,180) 0%,rgb(0,208,130) 100%);--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange: linear-gradient(135deg,rgba(252,185,0,1) 0%,rgba(255,105,0,1) 100%);--wp--preset--gradient--luminous-vivid-orange-to-vivid-red: linear-gradient(135deg,rgba(255,105,0,1) 0%,rgb(207,46,46) 100%);--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray: linear-gradient(135deg,rgb(238,238,238) 0%,rgb(169,184,195) 100%);--wp--preset--gradient--cool-to-warm-spectrum: linear-gradient(135deg,rgb(74,234,220) 0%,rgb(151,120,209) 20%,rgb(207,42,186) 40%,rgb(238,44,130) 60%,rgb(251,105,98) 80%,rgb(254,248,76) 100%);--wp--preset--gradient--blush-light-purple: linear-gradient(135deg,rgb(255,206,236) 0%,rgb(152,150,240) 100%);--wp--preset--gradient--blush-bordeaux: linear-gradient(135deg,rgb(254,205,165) 0%,rgb(254,45,45) 50%,rgb(107,0,62) 100%);--wp--preset--gradient--luminous-dusk: linear-gradient(135deg,rgb(255,203,112) 0%,rgb(199,81,192) 50%,rgb(65,88,208) 100%);--wp--preset--gradient--pale-ocean: linear-gradient(135deg,rgb(255,245,203) 0%,rgb(182,227,212) 50%,rgb(51,167,181) 100%);--wp--preset--gradient--electric-grass: linear-gradient(135deg,rgb(202,248,128) 0%,rgb(113,206,126) 100%);--wp--preset--gradient--midnight: linear-gradient(135deg,rgb(2,3,129) 0%,rgb(40,116,252) 100%);--wp--preset--font-size--small: 13px;--wp--preset--font-size--medium: 20px;--wp--preset--font-size--large: 36px;--wp--preset--font-size--x-large: 42px;--wp--preset--spacing--20: 0.44rem;--wp--preset--spacing--30: 0.67rem;--wp--preset--spacing--40: 1rem;--wp--preset--spacing--50: 1.5rem;--wp--preset--spacing--60: 2.25rem;--wp--preset--spacing--70: 3.38rem;--wp--preset--spacing--80: 5.06rem;--wp--preset--shadow--natural: 6px 6px 9px rgba(0, 0, 0, 0.2);--wp--preset--shadow--deep: 12px 12px 50px rgba(0, 0, 0, 0.4);--wp--preset--shadow--sharp: 6px 6px 0px rgba(0, 0, 0, 0.2);--wp--preset--shadow--outlined: 6px 6px 0px -3px rgba(255, 255, 255, 1), 6px 6px rgba(0, 0, 0, 1);--wp--preset--shadow--crisp: 6px 6px 0px rgba(0, 0, 0, 1);}:where(.is-layout-flex){gap: 0.5em;}:where(.is-layout-grid){gap: 0.5em;}body .is-layout-flex{display: flex;}.is-layout-flex{flex-wrap: wrap;align-items: center;}.is-layout-flex > :is(*, div){margin: 0;}body .is-layout-grid{display: grid;}.is-layout-grid > :is(*, div){margin: 0;}:where(.wp-block-columns.is-layout-flex){gap: 2em;}:where(.wp-block-columns.is-layout-grid){gap: 2em;}:where(.wp-block-post-template.is-layout-flex){gap: 1.25em;}:where(.wp-block-post-template.is-layout-grid){gap: 1.25em;}.has-black-color{color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-color{color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-color{color: var(--wp--preset--color--white) !important;}.has-pale-pink-color{color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-color{color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-color{color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-color{color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-color{color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-color{color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-color{color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-color{color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-color{color: var(--wp--preset--color--vivid-purple) !important;}.has-black-background-color{background-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-background-color{background-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-background-color{background-color: var(--wp--preset--color--white) !important;}.has-pale-pink-background-color{background-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-background-color{background-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-background-color{background-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-background-color{background-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-background-color{background-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-background-color{background-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-background-color{background-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-background-color{background-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-background-color{background-color: var(--wp--preset--color--vivid-purple) !important;}.has-black-border-color{border-color: var(--wp--preset--color--black) !important;}.has-cyan-bluish-gray-border-color{border-color: var(--wp--preset--color--cyan-bluish-gray) !important;}.has-white-border-color{border-color: var(--wp--preset--color--white) !important;}.has-pale-pink-border-color{border-color: var(--wp--preset--color--pale-pink) !important;}.has-vivid-red-border-color{border-color: var(--wp--preset--color--vivid-red) !important;}.has-luminous-vivid-orange-border-color{border-color: var(--wp--preset--color--luminous-vivid-orange) !important;}.has-luminous-vivid-amber-border-color{border-color: var(--wp--preset--color--luminous-vivid-amber) !important;}.has-light-green-cyan-border-color{border-color: var(--wp--preset--color--light-green-cyan) !important;}.has-vivid-green-cyan-border-color{border-color: var(--wp--preset--color--vivid-green-cyan) !important;}.has-pale-cyan-blue-border-color{border-color: var(--wp--preset--color--pale-cyan-blue) !important;}.has-vivid-cyan-blue-border-color{border-color: var(--wp--preset--color--vivid-cyan-blue) !important;}.has-vivid-purple-border-color{border-color: var(--wp--preset--color--vivid-purple) !important;}.has-vivid-cyan-blue-to-vivid-purple-gradient-background{background: var(--wp--preset--gradient--vivid-cyan-blue-to-vivid-purple) !important;}.has-light-green-cyan-to-vivid-green-cyan-gradient-background{background: var(--wp--preset--gradient--light-green-cyan-to-vivid-green-cyan) !important;}.has-luminous-vivid-amber-to-luminous-vivid-orange-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-amber-to-luminous-vivid-orange) !important;}.has-luminous-vivid-orange-to-vivid-red-gradient-background{background: var(--wp--preset--gradient--luminous-vivid-orange-to-vivid-red) !important;}.has-very-light-gray-to-cyan-bluish-gray-gradient-background{background: var(--wp--preset--gradient--very-light-gray-to-cyan-bluish-gray) !important;}.has-cool-to-warm-spectrum-gradient-background{background: var(--wp--preset--gradient--cool-to-warm-spectrum) !important;}.has-blush-light-purple-gradient-background{background: var(--wp--preset--gradient--blush-light-purple) !important;}.has-blush-bordeaux-gradient-background{background: var(--wp--preset--gradient--blush-bordeaux) !important;}.has-luminous-dusk-gradient-background{background: var(--wp--preset--gradient--luminous-dusk) !important;}.has-pale-ocean-gradient-background{background: var(--wp--preset--gradient--pale-ocean) !important;}.has-electric-grass-gradient-background{background: var(--wp--preset--gradient--electric-grass) !important;}.has-midnight-gradient-background{background: var(--wp--preset--gradient--midnight) !important;}.has-small-font-size{font-size: var(--wp--preset--font-size--small) !important;}.has-medium-font-size{font-size: var(--wp--preset--font-size--medium) !important;}.has-large-font-size{font-size: var(--wp--preset--font-size--large) !important;}.has-x-large-font-size{font-size: var(--wp--preset--font-size--x-large) !important;} :where(.wp-block-post-template.is-layout-flex){gap: 1.25em;}:where(.wp-block-post-template.is-layout-grid){gap: 1.25em;} :where(.wp-block-columns.is-layout-flex){gap: 2em;}:where(.wp-block-columns.is-layout-grid){gap: 2em;} :root :where(.wp-block-pullquote){font-size: 1.5em;line-height: 1.6;} </style> <link rel='stylesheet' id='ddmp-author-box-styles-css' href='https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/css/author-box.css?ver=1753735005' type='text/css' media='all' /> <link rel='stylesheet' id='styles-css' href='https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/style.css?ver=1753802936' type='text/css' media='all' /> <style id='styles-inline-css' type='text/css'> :root { --font-family: 'PT Sans'; } </style> <link rel='stylesheet' id='font-override-css' href='https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/css/font-override.css?ver=1753802936' type='text/css' media='all' /> <link rel='stylesheet' id='header-styles-css' href='https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/css/header-styles.css?ver=1753802936' type='text/css' media='all' /> <script type="text/javascript" id="cookie-law-info-js-extra"> /* <![CDATA[ */ var _ckyConfig = {"_ipData":[],"_assetsURL":"https:\/\/artificialintelligencesolutionss.com\/wp-content\/plugins\/cookie-law-info\/lite\/frontend\/images\/","_publicURL":"https:\/\/artificialintelligencesolutionss.com","_expiry":"365","_categories":[{"name":"Necessary","slug":"necessary","isNecessary":true,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":true,"ccpa":true}},{"name":"Functional","slug":"functional","isNecessary":false,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":false,"ccpa":false}},{"name":"Analytics","slug":"analytics","isNecessary":false,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":false,"ccpa":false}},{"name":"Performance","slug":"performance","isNecessary":false,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":false,"ccpa":false}},{"name":"Advertisement","slug":"advertisement","isNecessary":false,"ccpaDoNotSell":true,"cookies":[],"active":true,"defaultConsent":{"gdpr":false,"ccpa":false}}],"_activeLaw":"gdpr","_rootDomain":"","_block":"1","_showBanner":"1","_bannerConfig":{"settings":{"type":"box","preferenceCenterType":"popup","position":"bottom-left","applicableLaw":"gdpr"},"behaviours":{"reloadBannerOnAccept":false,"loadAnalyticsByDefault":false,"animations":{"onLoad":"animate","onHide":"sticky"}},"config":{"revisitConsent":{"status":true,"tag":"revisit-consent","position":"bottom-left","meta":{"url":"#"},"styles":{"background-color":"#0056A7"},"elements":{"title":{"type":"text","tag":"revisit-consent-title","status":true,"styles":{"color":"#0056a7"}}}},"preferenceCenter":{"toggle":{"status":true,"tag":"detail-category-toggle","type":"toggle","states":{"active":{"styles":{"background-color":"#1863DC"}},"inactive":{"styles":{"background-color":"#D0D5D2"}}}}},"categoryPreview":{"status":false,"toggle":{"status":true,"tag":"detail-category-preview-toggle","type":"toggle","states":{"active":{"styles":{"background-color":"#1863DC"}},"inactive":{"styles":{"background-color":"#D0D5D2"}}}}},"videoPlaceholder":{"status":true,"styles":{"background-color":"#000000","border-color":"#000000","color":"#ffffff"}},"readMore":{"status":false,"tag":"readmore-button","type":"link","meta":{"noFollow":true,"newTab":true},"styles":{"color":"#1863DC","background-color":"transparent","border-color":"transparent"}},"auditTable":{"status":true},"optOption":{"status":true,"toggle":{"status":true,"tag":"optout-option-toggle","type":"toggle","states":{"active":{"styles":{"background-color":"#1863dc"}},"inactive":{"styles":{"background-color":"#FFFFFF"}}}}}}},"_version":"3.3.1","_logConsent":"1","_tags":[{"tag":"accept-button","styles":{"color":"#FFFFFF","background-color":"#1863DC","border-color":"#1863DC"}},{"tag":"reject-button","styles":{"color":"#1863DC","background-color":"transparent","border-color":"#1863DC"}},{"tag":"settings-button","styles":{"color":"#1863DC","background-color":"transparent","border-color":"#1863DC"}},{"tag":"readmore-button","styles":{"color":"#1863DC","background-color":"transparent","border-color":"transparent"}},{"tag":"donotsell-button","styles":{"color":"#1863DC","background-color":"transparent","border-color":"transparent"}},{"tag":"accept-button","styles":{"color":"#FFFFFF","background-color":"#1863DC","border-color":"#1863DC"}},{"tag":"revisit-consent","styles":{"background-color":"#0056A7"}}],"_shortCodes":[{"key":"cky_readmore","content":"<a href=\"#\" class=\"cky-policy\" aria-label=\"Cookie Policy\" target=\"_blank\" rel=\"noopener\" data-cky-tag=\"readmore-button\">Cookie Policy<\/a>","tag":"readmore-button","status":false,"attributes":{"rel":"nofollow","target":"_blank"}},{"key":"cky_show_desc","content":"<button class=\"cky-show-desc-btn\" data-cky-tag=\"show-desc-button\" aria-label=\"Show more\">Show more<\/button>","tag":"show-desc-button","status":true,"attributes":[]},{"key":"cky_hide_desc","content":"<button class=\"cky-show-desc-btn\" data-cky-tag=\"hide-desc-button\" aria-label=\"Show less\">Show less<\/button>","tag":"hide-desc-button","status":true,"attributes":[]},{"key":"cky_category_toggle_label","content":"[cky_{{status}}_category_label] [cky_preference_{{category_slug}}_title]","tag":"","status":true,"attributes":[]},{"key":"cky_enable_category_label","content":"Enable","tag":"","status":true,"attributes":[]},{"key":"cky_disable_category_label","content":"Disable","tag":"","status":true,"attributes":[]},{"key":"cky_video_placeholder","content":"<div class=\"video-placeholder-normal\" data-cky-tag=\"video-placeholder\" id=\"[UNIQUEID]\"><p class=\"video-placeholder-text-normal\" data-cky-tag=\"placeholder-title\">Please accept cookies to access this content<\/p><\/div>","tag":"","status":true,"attributes":[]},{"key":"cky_enable_optout_label","content":"Enable","tag":"","status":true,"attributes":[]},{"key":"cky_disable_optout_label","content":"Disable","tag":"","status":true,"attributes":[]},{"key":"cky_optout_toggle_label","content":"[cky_{{status}}_optout_label] [cky_optout_option_title]","tag":"","status":true,"attributes":[]},{"key":"cky_optout_option_title","content":"Do Not Sell or Share My Personal Information","tag":"","status":true,"attributes":[]},{"key":"cky_optout_close_label","content":"Close","tag":"","status":true,"attributes":[]},{"key":"cky_preference_close_label","content":"Close","tag":"","status":true,"attributes":[]}],"_rtl":"","_language":"en","_providersToBlock":[]}; var _ckyStyles = {"css":".cky-overlay{background: #000000; opacity: 0.4; position: fixed; top: 0; left: 0; width: 100%; height: 100%; z-index: 99999999;}.cky-hide{display: none;}.cky-btn-revisit-wrapper{display: flex; align-items: center; justify-content: center; background: #0056a7; width: 45px; height: 45px; border-radius: 50%; position: fixed; z-index: 999999; cursor: pointer;}.cky-revisit-bottom-left{bottom: 15px; left: 15px;}.cky-revisit-bottom-right{bottom: 15px; right: 15px;}.cky-btn-revisit-wrapper .cky-btn-revisit{display: flex; align-items: center; justify-content: center; background: none; border: none; cursor: pointer; position: relative; margin: 0; padding: 0;}.cky-btn-revisit-wrapper .cky-btn-revisit img{max-width: fit-content; margin: 0; height: 30px; width: 30px;}.cky-revisit-bottom-left:hover::before{content: attr(data-tooltip); position: absolute; background: #4e4b66; color: #ffffff; left: calc(100% + 7px); font-size: 12px; line-height: 16px; width: max-content; padding: 4px 8px; border-radius: 4px;}.cky-revisit-bottom-left:hover::after{position: absolute; content: \"\"; border: 5px solid transparent; left: calc(100% + 2px); border-left-width: 0; border-right-color: #4e4b66;}.cky-revisit-bottom-right:hover::before{content: attr(data-tooltip); position: absolute; background: #4e4b66; color: #ffffff; right: calc(100% + 7px); font-size: 12px; line-height: 16px; width: max-content; padding: 4px 8px; border-radius: 4px;}.cky-revisit-bottom-right:hover::after{position: absolute; content: \"\"; border: 5px solid transparent; right: calc(100% + 2px); border-right-width: 0; border-left-color: #4e4b66;}.cky-revisit-hide{display: none;}.cky-consent-container{position: fixed; width: 440px; box-sizing: border-box; z-index: 9999999; border-radius: 6px;}.cky-consent-container .cky-consent-bar{background: #ffffff; border: 1px solid; padding: 20px 26px; box-shadow: 0 -1px 10px 0 #acabab4d; border-radius: 6px;}.cky-box-bottom-left{bottom: 40px; left: 40px;}.cky-box-bottom-right{bottom: 40px; right: 40px;}.cky-box-top-left{top: 40px; left: 40px;}.cky-box-top-right{top: 40px; right: 40px;}.cky-custom-brand-logo-wrapper .cky-custom-brand-logo{width: 100px; height: auto; margin: 0 0 12px 0;}.cky-notice .cky-title{color: #212121; font-weight: 700; font-size: 18px; line-height: 24px; margin: 0 0 12px 0;}.cky-notice-des *,.cky-preference-content-wrapper *,.cky-accordion-header-des *,.cky-gpc-wrapper .cky-gpc-desc *{font-size: 14px;}.cky-notice-des{color: #212121; font-size: 14px; line-height: 24px; font-weight: 400;}.cky-notice-des img{height: 25px; width: 25px;}.cky-consent-bar .cky-notice-des p,.cky-gpc-wrapper .cky-gpc-desc p,.cky-preference-body-wrapper .cky-preference-content-wrapper p,.cky-accordion-header-wrapper .cky-accordion-header-des p,.cky-cookie-des-table li div:last-child p{color: inherit; margin-top: 0; overflow-wrap: break-word;}.cky-notice-des P:last-child,.cky-preference-content-wrapper p:last-child,.cky-cookie-des-table li div:last-child p:last-child,.cky-gpc-wrapper .cky-gpc-desc p:last-child{margin-bottom: 0;}.cky-notice-des a.cky-policy,.cky-notice-des button.cky-policy{font-size: 14px; color: #1863dc; white-space: nowrap; cursor: pointer; background: transparent; border: 1px solid; text-decoration: underline;}.cky-notice-des button.cky-policy{padding: 0;}.cky-notice-des a.cky-policy:focus-visible,.cky-notice-des button.cky-policy:focus-visible,.cky-preference-content-wrapper .cky-show-desc-btn:focus-visible,.cky-accordion-header .cky-accordion-btn:focus-visible,.cky-preference-header .cky-btn-close:focus-visible,.cky-switch input[type=\"checkbox\"]:focus-visible,.cky-footer-wrapper a:focus-visible,.cky-btn:focus-visible{outline: 2px solid #1863dc; outline-offset: 2px;}.cky-btn:focus:not(:focus-visible),.cky-accordion-header .cky-accordion-btn:focus:not(:focus-visible),.cky-preference-content-wrapper .cky-show-desc-btn:focus:not(:focus-visible),.cky-btn-revisit-wrapper .cky-btn-revisit:focus:not(:focus-visible),.cky-preference-header .cky-btn-close:focus:not(:focus-visible),.cky-consent-bar .cky-banner-btn-close:focus:not(:focus-visible){outline: 0;}button.cky-show-desc-btn:not(:hover):not(:active){color: #1863dc; background: transparent;}button.cky-accordion-btn:not(:hover):not(:active),button.cky-banner-btn-close:not(:hover):not(:active),button.cky-btn-revisit:not(:hover):not(:active),button.cky-btn-close:not(:hover):not(:active){background: transparent;}.cky-consent-bar button:hover,.cky-modal.cky-modal-open button:hover,.cky-consent-bar button:focus,.cky-modal.cky-modal-open button:focus{text-decoration: none;}.cky-notice-btn-wrapper{display: flex; justify-content: flex-start; align-items: center; flex-wrap: wrap; margin-top: 16px;}.cky-notice-btn-wrapper .cky-btn{text-shadow: none; box-shadow: none;}.cky-btn{flex: auto; max-width: 100%; font-size: 14px; font-family: inherit; line-height: 24px; padding: 8px; font-weight: 500; margin: 0 8px 0 0; border-radius: 2px; cursor: pointer; text-align: center; text-transform: none; min-height: 0;}.cky-btn:hover{opacity: 0.8;}.cky-btn-customize{color: #1863dc; background: transparent; border: 2px solid #1863dc;}.cky-btn-reject{color: #1863dc; background: transparent; border: 2px solid #1863dc;}.cky-btn-accept{background: #1863dc; color: #ffffff; border: 2px solid #1863dc;}.cky-btn:last-child{margin-right: 0;}@media (max-width: 576px){.cky-box-bottom-left{bottom: 0; left: 0;}.cky-box-bottom-right{bottom: 0; right: 0;}.cky-box-top-left{top: 0; left: 0;}.cky-box-top-right{top: 0; right: 0;}}@media (max-width: 440px){.cky-box-bottom-left, .cky-box-bottom-right, .cky-box-top-left, .cky-box-top-right{width: 100%; max-width: 100%;}.cky-consent-container .cky-consent-bar{padding: 20px 0;}.cky-custom-brand-logo-wrapper, .cky-notice .cky-title, .cky-notice-des, .cky-notice-btn-wrapper{padding: 0 24px;}.cky-notice-des{max-height: 40vh; overflow-y: scroll;}.cky-notice-btn-wrapper{flex-direction: column; margin-top: 0;}.cky-btn{width: 100%; margin: 10px 0 0 0;}.cky-notice-btn-wrapper .cky-btn-customize{order: 2;}.cky-notice-btn-wrapper .cky-btn-reject{order: 3;}.cky-notice-btn-wrapper .cky-btn-accept{order: 1; margin-top: 16px;}}@media (max-width: 352px){.cky-notice .cky-title{font-size: 16px;}.cky-notice-des *{font-size: 12px;}.cky-notice-des, .cky-btn{font-size: 12px;}}.cky-modal.cky-modal-open{display: flex; visibility: visible; -webkit-transform: translate(-50%, -50%); -moz-transform: translate(-50%, -50%); -ms-transform: translate(-50%, -50%); -o-transform: translate(-50%, -50%); transform: translate(-50%, -50%); top: 50%; left: 50%; transition: all 1s ease;}.cky-modal{box-shadow: 0 32px 68px rgba(0, 0, 0, 0.3); margin: 0 auto; position: fixed; max-width: 100%; background: #ffffff; top: 50%; box-sizing: border-box; border-radius: 6px; z-index: 999999999; color: #212121; -webkit-transform: translate(-50%, 100%); -moz-transform: translate(-50%, 100%); -ms-transform: translate(-50%, 100%); -o-transform: translate(-50%, 100%); transform: translate(-50%, 100%); visibility: hidden; transition: all 0s ease;}.cky-preference-center{max-height: 79vh; overflow: hidden; width: 845px; overflow: hidden; flex: 1 1 0; display: flex; flex-direction: column; border-radius: 6px;}.cky-preference-header{display: flex; align-items: center; justify-content: space-between; padding: 22px 24px; border-bottom: 1px solid;}.cky-preference-header .cky-preference-title{font-size: 18px; font-weight: 700; line-height: 24px;}.cky-preference-header .cky-btn-close{margin: 0; cursor: pointer; vertical-align: middle; padding: 0; background: none; border: none; width: auto; height: auto; min-height: 0; line-height: 0; text-shadow: none; box-shadow: none;}.cky-preference-header .cky-btn-close img{margin: 0; height: 10px; width: 10px;}.cky-preference-body-wrapper{padding: 0 24px; flex: 1; overflow: auto; box-sizing: border-box;}.cky-preference-content-wrapper,.cky-gpc-wrapper .cky-gpc-desc{font-size: 14px; line-height: 24px; font-weight: 400; padding: 12px 0;}.cky-preference-content-wrapper{border-bottom: 1px solid;}.cky-preference-content-wrapper img{height: 25px; width: 25px;}.cky-preference-content-wrapper .cky-show-desc-btn{font-size: 14px; font-family: inherit; color: #1863dc; text-decoration: none; line-height: 24px; padding: 0; margin: 0; white-space: nowrap; cursor: pointer; background: transparent; border-color: transparent; text-transform: none; min-height: 0; text-shadow: none; box-shadow: none;}.cky-accordion-wrapper{margin-bottom: 10px;}.cky-accordion{border-bottom: 1px solid;}.cky-accordion:last-child{border-bottom: none;}.cky-accordion .cky-accordion-item{display: flex; margin-top: 10px;}.cky-accordion .cky-accordion-body{display: none;}.cky-accordion.cky-accordion-active .cky-accordion-body{display: block; padding: 0 22px; margin-bottom: 16px;}.cky-accordion-header-wrapper{cursor: pointer; width: 100%;}.cky-accordion-item .cky-accordion-header{display: flex; justify-content: space-between; align-items: center;}.cky-accordion-header .cky-accordion-btn{font-size: 16px; font-family: inherit; color: #212121; line-height: 24px; background: none; border: none; font-weight: 700; padding: 0; margin: 0; cursor: pointer; text-transform: none; min-height: 0; text-shadow: none; box-shadow: none;}.cky-accordion-header .cky-always-active{color: #008000; font-weight: 600; line-height: 24px; font-size: 14px;}.cky-accordion-header-des{font-size: 14px; line-height: 24px; margin: 10px 0 16px 0;}.cky-accordion-chevron{margin-right: 22px; position: relative; cursor: pointer;}.cky-accordion-chevron-hide{display: none;}.cky-accordion .cky-accordion-chevron i::before{content: \"\"; position: absolute; border-right: 1.4px solid; border-bottom: 1.4px solid; border-color: inherit; height: 6px; width: 6px; -webkit-transform: rotate(-45deg); -moz-transform: rotate(-45deg); -ms-transform: rotate(-45deg); -o-transform: rotate(-45deg); transform: rotate(-45deg); transition: all 0.2s ease-in-out; top: 8px;}.cky-accordion.cky-accordion-active .cky-accordion-chevron i::before{-webkit-transform: rotate(45deg); -moz-transform: rotate(45deg); -ms-transform: rotate(45deg); -o-transform: rotate(45deg); transform: rotate(45deg);}.cky-audit-table{background: #f4f4f4; border-radius: 6px;}.cky-audit-table .cky-empty-cookies-text{color: inherit; font-size: 12px; line-height: 24px; margin: 0; padding: 10px;}.cky-audit-table .cky-cookie-des-table{font-size: 12px; line-height: 24px; font-weight: normal; padding: 15px 10px; border-bottom: 1px solid; border-bottom-color: inherit; margin: 0;}.cky-audit-table .cky-cookie-des-table:last-child{border-bottom: none;}.cky-audit-table .cky-cookie-des-table li{list-style-type: none; display: flex; padding: 3px 0;}.cky-audit-table .cky-cookie-des-table li:first-child{padding-top: 0;}.cky-cookie-des-table li div:first-child{width: 100px; font-weight: 600; word-break: break-word; word-wrap: break-word;}.cky-cookie-des-table li div:last-child{flex: 1; word-break: break-word; word-wrap: break-word; margin-left: 8px;}.cky-footer-shadow{display: block; width: 100%; height: 40px; background: linear-gradient(180deg, rgba(255, 255, 255, 0) 0%, #ffffff 100%); position: absolute; bottom: calc(100% - 1px);}.cky-footer-wrapper{position: relative;}.cky-prefrence-btn-wrapper{display: flex; flex-wrap: wrap; align-items: center; justify-content: center; padding: 22px 24px; border-top: 1px solid;}.cky-prefrence-btn-wrapper .cky-btn{flex: auto; max-width: 100%; text-shadow: none; box-shadow: none;}.cky-btn-preferences{color: #1863dc; background: transparent; border: 2px solid #1863dc;}.cky-preference-header,.cky-preference-body-wrapper,.cky-preference-content-wrapper,.cky-accordion-wrapper,.cky-accordion,.cky-accordion-wrapper,.cky-footer-wrapper,.cky-prefrence-btn-wrapper{border-color: inherit;}@media (max-width: 845px){.cky-modal{max-width: calc(100% - 16px);}}@media (max-width: 576px){.cky-modal{max-width: 100%;}.cky-preference-center{max-height: 100vh;}.cky-prefrence-btn-wrapper{flex-direction: column;}.cky-accordion.cky-accordion-active .cky-accordion-body{padding-right: 0;}.cky-prefrence-btn-wrapper .cky-btn{width: 100%; margin: 10px 0 0 0;}.cky-prefrence-btn-wrapper .cky-btn-reject{order: 3;}.cky-prefrence-btn-wrapper .cky-btn-accept{order: 1; margin-top: 0;}.cky-prefrence-btn-wrapper .cky-btn-preferences{order: 2;}}@media (max-width: 425px){.cky-accordion-chevron{margin-right: 15px;}.cky-notice-btn-wrapper{margin-top: 0;}.cky-accordion.cky-accordion-active .cky-accordion-body{padding: 0 15px;}}@media (max-width: 352px){.cky-preference-header .cky-preference-title{font-size: 16px;}.cky-preference-header{padding: 16px 24px;}.cky-preference-content-wrapper *, .cky-accordion-header-des *{font-size: 12px;}.cky-preference-content-wrapper, .cky-preference-content-wrapper .cky-show-more, .cky-accordion-header .cky-always-active, .cky-accordion-header-des, .cky-preference-content-wrapper .cky-show-desc-btn, .cky-notice-des a.cky-policy{font-size: 12px;}.cky-accordion-header .cky-accordion-btn{font-size: 14px;}}.cky-switch{display: flex;}.cky-switch input[type=\"checkbox\"]{position: relative; width: 44px; height: 24px; margin: 0; background: #d0d5d2; -webkit-appearance: none; border-radius: 50px; cursor: pointer; outline: 0; border: none; top: 0;}.cky-switch input[type=\"checkbox\"]:checked{background: #1863dc;}.cky-switch input[type=\"checkbox\"]:before{position: absolute; content: \"\"; height: 20px; width: 20px; left: 2px; bottom: 2px; border-radius: 50%; background-color: white; -webkit-transition: 0.4s; transition: 0.4s; margin: 0;}.cky-switch input[type=\"checkbox\"]:after{display: none;}.cky-switch input[type=\"checkbox\"]:checked:before{-webkit-transform: translateX(20px); -ms-transform: translateX(20px); transform: translateX(20px);}@media (max-width: 425px){.cky-switch input[type=\"checkbox\"]{width: 38px; height: 21px;}.cky-switch input[type=\"checkbox\"]:before{height: 17px; width: 17px;}.cky-switch input[type=\"checkbox\"]:checked:before{-webkit-transform: translateX(17px); -ms-transform: translateX(17px); transform: translateX(17px);}}.cky-consent-bar .cky-banner-btn-close{position: absolute; right: 9px; top: 5px; background: none; border: none; cursor: pointer; padding: 0; margin: 0; min-height: 0; line-height: 0; height: auto; width: auto; text-shadow: none; box-shadow: none;}.cky-consent-bar .cky-banner-btn-close img{height: 9px; width: 9px; margin: 0;}.cky-notice-group{font-size: 14px; line-height: 24px; font-weight: 400; color: #212121;}.cky-notice-btn-wrapper .cky-btn-do-not-sell{font-size: 14px; line-height: 24px; padding: 6px 0; margin: 0; font-weight: 500; background: none; border-radius: 2px; border: none; cursor: pointer; text-align: left; color: #1863dc; background: transparent; border-color: transparent; box-shadow: none; text-shadow: none;}.cky-consent-bar .cky-banner-btn-close:focus-visible,.cky-notice-btn-wrapper .cky-btn-do-not-sell:focus-visible,.cky-opt-out-btn-wrapper .cky-btn:focus-visible,.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox:focus-visible{outline: 2px solid #1863dc; outline-offset: 2px;}@media (max-width: 440px){.cky-consent-container{width: 100%;}}@media (max-width: 352px){.cky-notice-des a.cky-policy, .cky-notice-btn-wrapper .cky-btn-do-not-sell{font-size: 12px;}}.cky-opt-out-wrapper{padding: 12px 0;}.cky-opt-out-wrapper .cky-opt-out-checkbox-wrapper{display: flex; align-items: center;}.cky-opt-out-checkbox-wrapper .cky-opt-out-checkbox-label{font-size: 16px; font-weight: 700; line-height: 24px; margin: 0 0 0 12px; cursor: pointer;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox{background-color: #ffffff; border: 1px solid black; width: 20px; height: 18.5px; margin: 0; -webkit-appearance: none; position: relative; display: flex; align-items: center; justify-content: center; border-radius: 2px; cursor: pointer;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox:checked{background-color: #1863dc; border: none;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox:checked::after{left: 6px; bottom: 4px; width: 7px; height: 13px; border: solid #ffffff; border-width: 0 3px 3px 0; border-radius: 2px; -webkit-transform: rotate(45deg); -ms-transform: rotate(45deg); transform: rotate(45deg); content: \"\"; position: absolute; box-sizing: border-box;}.cky-opt-out-checkbox-wrapper.cky-disabled .cky-opt-out-checkbox-label,.cky-opt-out-checkbox-wrapper.cky-disabled input[type=\"checkbox\"].cky-opt-out-checkbox{cursor: no-drop;}.cky-gpc-wrapper{margin: 0 0 0 32px;}.cky-footer-wrapper .cky-opt-out-btn-wrapper{display: flex; flex-wrap: wrap; align-items: center; justify-content: center; padding: 22px 24px;}.cky-opt-out-btn-wrapper .cky-btn{flex: auto; max-width: 100%; text-shadow: none; box-shadow: none;}.cky-opt-out-btn-wrapper .cky-btn-cancel{border: 1px solid #dedfe0; background: transparent; color: #858585;}.cky-opt-out-btn-wrapper .cky-btn-confirm{background: #1863dc; color: #ffffff; border: 1px solid #1863dc;}@media (max-width: 352px){.cky-opt-out-checkbox-wrapper .cky-opt-out-checkbox-label{font-size: 14px;}.cky-gpc-wrapper .cky-gpc-desc, .cky-gpc-wrapper .cky-gpc-desc *{font-size: 12px;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox{width: 16px; height: 16px;}.cky-opt-out-checkbox-wrapper input[type=\"checkbox\"].cky-opt-out-checkbox:checked::after{left: 5px; bottom: 4px; width: 3px; height: 9px;}.cky-gpc-wrapper{margin: 0 0 0 28px;}}.video-placeholder-youtube{background-size: 100% 100%; background-position: center; background-repeat: no-repeat; background-color: #b2b0b059; position: relative; display: flex; align-items: center; justify-content: center; max-width: 100%;}.video-placeholder-text-youtube{text-align: center; align-items: center; padding: 10px 16px; background-color: #000000cc; color: #ffffff; border: 1px solid; border-radius: 2px; cursor: pointer;}.video-placeholder-normal{background-image: url(\"\/wp-content\/plugins\/cookie-law-info\/lite\/frontend\/images\/placeholder.svg\"); background-size: 80px; background-position: center; background-repeat: no-repeat; background-color: #b2b0b059; position: relative; display: flex; align-items: flex-end; justify-content: center; max-width: 100%;}.video-placeholder-text-normal{align-items: center; padding: 10px 16px; text-align: center; border: 1px solid; border-radius: 2px; cursor: pointer;}.cky-rtl{direction: rtl; text-align: right;}.cky-rtl .cky-banner-btn-close{left: 9px; right: auto;}.cky-rtl .cky-notice-btn-wrapper .cky-btn:last-child{margin-right: 8px;}.cky-rtl .cky-notice-btn-wrapper .cky-btn:first-child{margin-right: 0;}.cky-rtl .cky-notice-btn-wrapper{margin-left: 0; margin-right: 15px;}.cky-rtl .cky-prefrence-btn-wrapper .cky-btn{margin-right: 8px;}.cky-rtl .cky-prefrence-btn-wrapper .cky-btn:first-child{margin-right: 0;}.cky-rtl .cky-accordion .cky-accordion-chevron i::before{border: none; border-left: 1.4px solid; border-top: 1.4px solid; left: 12px;}.cky-rtl .cky-accordion.cky-accordion-active .cky-accordion-chevron i::before{-webkit-transform: rotate(-135deg); -moz-transform: rotate(-135deg); -ms-transform: rotate(-135deg); -o-transform: rotate(-135deg); transform: rotate(-135deg);}@media (max-width: 768px){.cky-rtl .cky-notice-btn-wrapper{margin-right: 0;}}@media (max-width: 576px){.cky-rtl .cky-notice-btn-wrapper .cky-btn:last-child{margin-right: 0;}.cky-rtl .cky-prefrence-btn-wrapper .cky-btn{margin-right: 0;}.cky-rtl .cky-accordion.cky-accordion-active .cky-accordion-body{padding: 0 22px 0 0;}}@media (max-width: 425px){.cky-rtl .cky-accordion.cky-accordion-active .cky-accordion-body{padding: 0 15px 0 0;}}.cky-rtl .cky-opt-out-btn-wrapper .cky-btn{margin-right: 12px;}.cky-rtl .cky-opt-out-btn-wrapper .cky-btn:first-child{margin-right: 0;}.cky-rtl .cky-opt-out-checkbox-wrapper .cky-opt-out-checkbox-label{margin: 0 12px 0 0;}"}; /* ]]> */ </script> <script type="text/javascript" src="https://artificialintelligencesolutionss.com/wp-content/plugins/cookie-law-info/lite/frontend/js/script.min.js?ver=3.3.1" id="cookie-law-info-js"></script> <script type="text/javascript" src="https://artificialintelligencesolutionss.com/wp-includes/js/jquery/jquery.min.js?ver=3.7.1" id="jquery-core-js"></script> <script type="text/javascript" src="https://artificialintelligencesolutionss.com/wp-includes/js/jquery/jquery-migrate.min.js?ver=3.4.1" id="jquery-migrate-js"></script> <link rel="https://api.w.org/" href="https://artificialintelligencesolutionss.com/wp-json/" /><link rel="alternate" title="JSON" type="application/json" href="https://artificialintelligencesolutionss.com/wp-json/wp/v2/posts/862" /><link rel="EditURI" type="application/rsd+xml" title="RSD" href="https://artificialintelligencesolutionss.com/xmlrpc.php?rsd" /> <meta name="generator" content="WordPress 6.8.3" /> <link rel='shortlink' href='https://artificialintelligencesolutionss.com/?p=862' /> <link rel="alternate" title="oEmbed (JSON)" type="application/json+oembed" href="https://artificialintelligencesolutionss.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fartificialintelligencesolutionss.com%2Flatest-trends-in-computer-vision-for-object-detection-in-the-us%2F" /> <link rel="alternate" title="oEmbed (XML)" type="text/xml+oembed" href="https://artificialintelligencesolutionss.com/wp-json/oembed/1.0/embed?url=https%3A%2F%2Fartificialintelligencesolutionss.com%2Flatest-trends-in-computer-vision-for-object-detection-in-the-us%2F&#038;format=xml" /> <style id="cky-style-inline">[data-cky-tag]{visibility:hidden;}</style><style> /* MOBILE - até 767px */ @media (max-width: 767px) { .swiper-benefits-pagination .swiper-pagination-bullet { background-color: #ffffff !important; opacity: 0.5; } .swiper-benefits-pagination .swiper-pagination-bullet-active { background-color: #ffffff !important; opacity: 1; } .footer-custom .footer-columns { display: flex; flex-direction: column; align-items: center; } .footer-custom .footer-logo-col { text-align: center; margin-bottom: 30px; } .footer-custom .footer-logo-col img { margin: 0 auto 15px; } .footer-custom .footer-logo-text { font-size: 14px; margin-bottom: 30px; } .footer-custom .footer-columns-group { display: flex; justify-content: center; flex-wrap: wrap; gap: 10px; margin-bottom: 30px; width: 100%; padding: 0 12px; } .footer-custom .footer-columns-group .footer-col { min-width: 140px; max-width: 180px; text-align: center; flex: 1 1 45%; } .footer-custom .footer-col.transparency { width: 100%; max-width: 500px; text-align: center; } .footer-custom h4 { font-weight: bold; font-size: 18px; margin-bottom: 10px; } .footer-custom .footer-logo-text { margin-top: 10px; max-width: 320px; margin-left: auto; margin-right: auto; font-size: 14px; } .footer-custom .footer-menu { list-style: none; padding: 0; margin: 0; } .footer-custom .footer-menu li a { display: block; color: inherit; text-decoration: none; margin-bottom: 6px; } .footer-custom .footer-menu li a:hover { text-decoration: underline; } } /* DESKTOP */ @media (min-width: 768px) { .footer-custom h4 { font-weight: bold; font-size: 18px; margin-bottom: 10px; text-align: left; } .footer-custom .footer-logo-text { margin-top: 10px; max-width: 320px; margin-left: auto; margin-right: auto; font-size: 14px; text-align: center; } .footer-custom .footer-menu { list-style: none; padding: 0; margin: 0; } .footer-custom .footer-menu li a { display: block; color: inherit; text-decoration: none; margin-bottom: 6px; } .footer-custom .footer-menu li a:hover { text-decoration: underline; } .footer-custom .footer-columns { display: flex; justify-content: space-between; align-items: flex-start; gap: 20px; padding: 60px 0; flex-wrap: wrap; } .footer-custom .footer-logo-col { flex: 1 1 25%; } .footer-custom .footer-columns-group { display: flex; flex: 1 1 25%; justify-content: space-between; gap: 60px; } .footer-custom .footer-columns-group .footer-col { flex: 1; text-align: left; } .footer-custom .footer-col.transparency { flex: 1 1 25%; text-align: left; } } .home-posts-pagination-wrapper { text-align: center; margin-top: 30px; MARGIN: 0 AUTO; font-size: 17px; } .home-posts-pagination-wrapper .pagination { display: inline-flex; gap: 8px; } .home-posts-pagination-wrapper .page-numbers { display: inline-flex; align-items: center; justify-content: center; padding: 10px 16px; border: 1px solid #eee; border-radius: 8px; font-weight: 600; color: #111; text-decoration: none; transition: all 0.2s ease; } .home-posts-pagination-wrapper .page-numbers:hover { background-color: #f3f3f3; } .home-posts-pagination-wrapper .page-numbers.current { background-color: #f9f9f9; border: 2px solid #ccc; } .home-posts-title { color: #0d47a1 !important; } .home-posts-tag { color: #1976d2 !important; } .institutional-home h2 { color: #0d47a1 !important; } .institutional-home p { color: #333333 !important; } .benefit-card { background-color: #ffffff !important; border-radius: 15px; padding: 20px; height: 100%; transition: transform 0.3s ease, box-shadow 0.3s ease; } .benefit-card:hover { transform: scale(1.03); box-shadow: 0 8px 24px rgba(0,0,0,0.12); } .benefit-card .card-title { color: #0d47a1 !important; font-weight: bold; display: flex; align-items: center; gap: 0px; margin-bottom: 5px; font-size: 18px; } .benefit-card .card-text { color: #333333 !important; font-size: 14px; } .benefits-block .benefits-title { color: #ffffff; font-size: 22px; text-align: center; margin-bottom: 40px; } .benefits-block .benefits-title strong { color: #bbdefb; } .header { background-color: #1e88e5 !important; } a.nav-link span { color: #ffffff !important; transition: color 0.3s ease; } a.nav-link:hover span { color: #90caf9 !important; } .search-toggle { color: #ffffff !important; } .search-toggle:hover { color: #90caf9 !important; } .fas.fa-search { color: #ffffff !important; } .search-toggle:hover .fas.fa-search { color: #90caf9 !important; } .hero-home h1 { color: #0d47a1 !important; } .hero-home h1 b { color: #1976d2 !important; } .hero-home p.lead { color: #333333 !important; } </style><style> .footer-custom { background-color: #0d47a1 !important; color: #ffffff !important; } .footer-custom a { color: #ffffff !important; } </style><meta name="author" content="Emilly Correa"><style type="text/css">.broken_link, a.broken_link { text-decoration: line-through; }</style><link rel="icon" href="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1-32x32.png" sizes="32x32" /> <link rel="icon" href="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1-192x192.png" sizes="192x192" /> <link rel="apple-touch-icon" href="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1-180x180.png" /> <meta name="msapplication-TileImage" content="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/cropped-LOGO-TIPO-Quadrado-960x960-2025-05-26T120707.755-scaled-1-270x270.png" /> <style type="text/css" id="wp-custom-css"> .pp-author-boxes-meta { display: none !important; } .cta-robo-seo { background-color: #4CAF50; /* Cor verde padrão */ color: white!important; padding: 20px 30px; border: none; border-radius: 5px; text-align: center; text-decoration: none; display: inline-block; font-size: 25px; cursor: pointer; transition: background-color 0.3s ease, box-shadow 0.3s ease; } .cta-robo-seo:hover { background-color: #45a049; /* Cor verde mais escura no hover */ box-shadow: 0px 0px 10px rgba(0, 128, 0, 0.5); /* Sombra verde suave */ } /* esconder imagem de capa dentro da pagina do post*/ .card-preview.mt-8 { display: none; } /* corrigir espaçamento dos videos nos posts*/ iframe[src*="youtube.com"] { width: 100%; max-width: 100%; height: auto; aspect-ratio: 16 / 9; } </style> <!-- Google Tag Manager --> <!-- End Google Tag Manager --> <!-- Google tag (gtag.js) --> <!-- end Google tag (gtag.js) --> <style> :root { --header-bg-color: #1e88e5; --menu-color: #ffffff; --menu-hover-color: #f0f0f0; } .header { background-color: #1e88e5; } </style> <script src="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/js/faq.js?ver=1753802936"></script> </head> <body class="wp-singular post-template-default single single-post postid-862 single-format-standard wp-theme-ddmp-theme"> <!-- Google Tag Manager (noscript) --> <!-- End Google Tag Manager (noscript) --> <div class="page"> <!-- BEGIN header --> <header class="header"> <div class="container"> <nav class="navbar navbar-expand-lg justify-content-between position-relative"> <div class="navbar-brand"> <a class="navbar-logo" href="https://artificialintelligencesolutionss.com"> <img class="navbar-pic" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/artificialintelligencesolutionss.com_.png" width="160" alt="ARTIFICIAL INTELLIGENCE SOLUTIONSS"> </a> </div> <div class="d-flex align-items-center"> <!-- Botão hamburguer --> <button class="navbar-toggler" type="button" data-toggle="collapse" data-target="#navbarDropdown" aria-controls="navbarDropdown" aria-expanded="false" aria-label="Toggle navigation"> <span class="navbar-toggler-icon"></span> </button> <!-- Lupa no mobile --> <div class="search-container d-lg-none ml-2"> <button class="search-toggle"> <i class="fas fa-search"></i> </button> <form class="search-form" role="search" method="get" action="https://artificialintelligencesolutionss.com/"> <input type="search" name="s" class="search-input" placeholder="Search..." aria-label="Search"> <button type="submit" class="search-submit"><i class="fas fa-arrow-right"></i></button> </form> </div> </div> <!-- Menu colapsável --> <div class="collapse navbar-collapse" id="navbarDropdown"> <ul id="menu-menu-principal" class="navbar-nav" itemscope itemtype="http://www.schema.org/SiteNavigationElement"><li id="menu-item-569" class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-569 nav-item"><a itemprop="url" href="https://artificialintelligencesolutionss.com/category/ai-business-applications/" class="nav-link"><span itemprop="name">AI Business Applications</span></a></li> <li id="menu-item-570" class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-570 nav-item"><a itemprop="url" href="https://artificialintelligencesolutionss.com/category/ai-ethics-e-governance/" class="nav-link"><span itemprop="name">AI Ethics &amp; Governance</span></a></li> <li id="menu-item-571" class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-571 nav-item"><a itemprop="url" href="https://artificialintelligencesolutionss.com/category/ai-in-healthcare/" class="nav-link"><span itemprop="name">AI in Healthcare</span></a></li> <li id="menu-item-572" class="menu-item menu-item-type-taxonomy menu-item-object-category current-post-ancestor current-menu-parent current-post-parent active menu-item-572 nav-item"><a itemprop="url" href="https://artificialintelligencesolutionss.com/category/ai-research-e-development/" class="nav-link"><span itemprop="name">AI Research &amp; Development</span></a></li> </ul> <div class="header-article">Latest Trends in Computer Vision for Object Detection in the US</div> <div class="share"> <div class="share-title">If this content was useful, please <strong>share it</strong></div> <div class="share-list"> <a href="#" class="share-btn share-twitter btn"> <img class="share-icon" src="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/img/icon-twitter-white.svg" alt="Share on Twitter"> <span class="share-label">Share on Twitter</span> </a> <a href="#" class="share-btn share-facebook btn"> <img class="share-icon" src="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/img/icon-facebook-white.svg" alt="Share on Facebook"> <span class="share-label">Share on Facebook</span> </a> </div> </div> </div> <!-- Lupa no desktop --> <div class="search-container d-none d-lg-flex ml-auto"> <button class="search-toggle"> <i class="fas fa-search"></i> </button> <form class="search-form" role="search" method="get" action="https://artificialintelligencesolutionss.com/"> <input type="search" name="s" class="search-input" placeholder="Search..." aria-label="Search"> <button type="submit" class="search-submit"><i class="fas fa-arrow-right"></i></button> </form> </div> </nav> </div> <div class="indicator"> <div class="indicator-position js-indicator-position"></div> </div> </header> <!-- END header --> <!-- BEGIN inner --> <div class="inner"> <article id="post-862" class="post-862 post type-post status-publish format-standard has-post-thumbnail hentry category-ai-research-e-development"> <div class="container"> <div class="row"> <div class="col-md-8 col-lg-8 mx-auto"> <div class="section section-featured js-section-featured"> <div class="card card-featured card-top m-0"> <div class="card-body"> <h1 class="card-title">Latest Trends in Computer Vision for Object Detection in the US</h1> <div class="card-text"></div> <div class="card-author"> <p>By: <b>Emilly Correa</b> on February 15, 2025 <strong>Última atualização em:</strong> 1 de August de 2025</p> </div> </div> <div class="card-preview mt-8"> <img class="card-pic" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774490_67c196ed_cover.jpg" alt="Latest Trends in Computer Vision for Object Detection in the US" /> </div> </div> </div> <div class="section section-content"> <div class="center"> <div class="content"> <p class="summarization"><strong>The latest trends in computer vision research for object detection and recognition in the US include advancements in deep learning models, the use of transformer networks, improvements in few-shot learning, and the development of more robust and explainable AI systems.</strong></p> <p> <!-- Título Principal SEO: Computer Vision Trends in US Object Detection --></p> <p>Object recognition and detection have become integral to numerous applications, from autonomous vehicles to medical imaging. <strong>What are the Latest Trends in Computer Vision Research for Object Detection and Recognition in the US?</strong> This article delves into the cutting-edge advancements shaping this field in the United States.</p> <p></p> <h2>Advancements in Deep Learning Models for Object Detection</h2> <p>Deep learning has revolutionized computer vision, and object detection is no exception. Recent research focuses on refining existing models and developing new architectures that can handle complex scenes and datasets more effectively.</p> <h3>Refining Convolutional Neural Networks (CNNs)</h3> <p>CNNs remain a foundational element in object detection. Current trends involve optimizing CNN architectures to improve accuracy and efficiency. This includes techniques like network pruning and quantization, which reduce computational costs without significantly impacting performance. Researchers are also exploring novel CNN designs that incorporate attention mechanisms to focus on the most relevant features in an image.</p> <h3>The Rise of Capsule Networks</h3> <p>Capsule networks offer an alternative to traditional CNNs by preserving hierarchical relationships between object parts. Unlike CNNs, which can struggle with variations in viewpoint and pose, capsule networks are designed to be more robust. Ongoing research aims to enhance the performance of capsule networks in real-world object detection tasks, particularly in cluttered environments.</p> <p><img decoding="async" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774490_67c196ed_internal_1.jpg" alt="A graphical representation of a Capsule Network architecture, showcasing capsules detecting object parts and their relationships through dynamic routing, highlighted with color-coded layers and directional arrows indicating information flow." class="aligncenter size-large"/></p> <ul> <li>Improved accuracy in identifying objects with varying orientations.</li> <li>Enhanced robustness to adversarial attacks.</li> <li>Better handling of occluded objects in crowded scenes.</li> </ul> <p>Deep learning models are continually being refined to address the challenges of object detection. By focusing on efficiency, robustness, and hierarchical understanding, researchers are pushing the boundaries of what&#8217;s achievable in this domain.</p> <h2>Transformer Networks in Computer Vision</h2> <div class="video-container" style="position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; max-width: 100%; margin-bottom: 20px;"> <iframe style="position: absolute; top: 0; left: 0; width: 100%; height: 100%;" width="560" height="315" src="https://www.youtube.com/embed/WgPbbWmnXJ8" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen><br /> </iframe> </div> <p>Transformer networks, initially developed for natural language processing, have made significant inroads into computer vision. Their ability to capture long-range dependencies and contextual information has proven valuable for object detection and recognition.</p> <h3>Adapting Transformers for Object Detection</h3> <p>One key trend is adapting transformer architectures for direct object detection. Models like DETR (DEtection TRansformer) eliminate the need for hand-designed components like anchor boxes, simplifying the detection pipeline. These models leverage the attention mechanism to relate different parts of an image and predict object bounding boxes and class labels directly.</p> <h3>Vision Transformers (ViTs)</h3> <p>Vision Transformers (ViTs) divide an image into patches and treat them as tokens, similar to words in a sentence. This allows the transformer to capture global context and relationships between different image regions. ViTs have shown promising results in various computer vision tasks, including object detection, and are an active area of research.</p> <p>Vision Transformers and DETR models are revolutionizing how object detection is approached, offering greater flexibility and performance. These networks provide scalable solutions in computer vision tasks by leveraging self-attention mechanisms.</p> <ul> <li>Global context understanding through self-attention.</li> <li>Elimination of hand-designed components.</li> <li>Scalability to large datasets and high-resolution images.</li> </ul> <p>Transformer networks represent a paradigm shift in computer vision, offering new ways to approach object detection and recognition. As research continues, these models are expected to play an increasingly important role in the field.</p> <h2>Few-Shot Learning and Object Detection</h2> <p>One of the major challenges in object detection is the need for large amounts of labeled data. Few-shot learning aims to address this issue by enabling models to learn from only a few examples.</p> <h3>Meta-Learning Approaches</h3> <p>Meta-learning, or &#8220;learning to learn,&#8221; is a popular approach for few-shot object detection. Meta-learning models are trained on a variety of tasks, enabling them to quickly adapt to new tasks with limited data. These models often use techniques like metric learning or model-agnostic meta-learning (MAML) to facilitate rapid adaptation.</p> <h3>Transfer Learning Techniques</h3> <p>Transfer learning involves leveraging knowledge gained from pre-trained models on large datasets to improve performance on new, related tasks. In the context of few-shot object detection, transfer learning can help models generalize from a few examples by transferring features and representations learned from other object categories. Fine-tuning pre-trained models on small datasets is a common strategy.</p> <p>Few-shot learning allows computer vision models to generalize based on only very few examples. Transfer learning techniques are vital for quickly adapting object detection models to new tasks.</p> <p><img decoding="async" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774490_67c196ed_internal_2.jpg" alt="A visual comparison illustrating the difference between traditional machine learning requiring thousands of labeled images, and few-shot learning achieving similar accuracy with only a handful of labeled images per object category." class="aligncenter size-large"/></p> <ul> <li>Rapid adaptation to new object categories.</li> <li>Reduced data labeling costs.</li> <li>Improved generalization from limited data.</li> </ul> <p>Few-shot learning represents a promising direction for object detection, particularly in scenarios where labeled data is scarce. By leveraging meta-learning and transfer learning techniques, researchers are making progress towards more data-efficient object detection systems.</p> <h2>Explainable AI (XAI) in Object Detection</h2> <p>As object detection systems become more complex and integrated into critical applications, the need for explainability becomes paramount. Explainable AI (XAI) aims to make these systems more transparent and understandable to humans.</p> <h3>Attention Visualization Techniques</h3> <p>Attention visualization techniques provide insights into which parts of an image a model is attending to when making a prediction. These techniques often involve generating heatmaps that highlight the most relevant regions. By visualizing attention maps, users can gain a better understanding of why a model made a particular decision.</p> <h3>Saliency Maps and Gradient-Based Methods</h3> <p>Saliency maps and gradient-based methods are another class of XAI techniques that highlight the most important pixels in an image for a given prediction. These methods compute the gradient of the output with respect to the input, providing a sensitivity map that indicates which pixels have the largest impact on the model&#8217;s decision. Integrated Gradients and Grad-CAM are examples of this kind of technique.</p> <p>Attention visualization and saliency maps are two notable ways of achieving Explainable AI (XAI). It’s important to know why a model made a certain decision; making models more transparent to users is essential, especially in critical applications.</p> <ul> <li>Increased trust in AI systems.</li> <li>Improved model debugging and refinement.</li> <li>Compliance with regulatory requirements.</li> </ul> <p>XAI is essential for ensuring that object detection systems are reliable, accountable, and trustworthy. By making these systems more transparent, researchers are paving the way for their broader adoption in sensitive applications.</p> <h2>Robustness to Adversarial Attacks</h2> <p>Adversarial attacks pose a significant threat to object detection systems. These attacks involve introducing small, carefully crafted perturbations to input images that can cause a model to make incorrect predictions. Research in this area focuses on developing methods to defend against these attacks and improve the robustness of object detection systems.</p> <h3>Adversarial Training</h3> <p>Adversarial training involves training a model on both clean and adversarially perturbed examples. By exposing the model to adversarial attacks during training, it can learn to be more resilient to these attacks. This technique has been shown to be effective in improving the robustness of object detection systems.</p> <h3>Defensive Distillation</h3> <p>Defensive distillation is another technique for enhancing the robustness of object detection models. This method involves training a &#8220;student&#8221; model to mimic the behavior of a &#8220;teacher&#8221; model that has been regularized to be more robust. The student model inherits the robustness of the teacher model while maintaining good performance on clean examples.</p> <p>Adversarial training and defensive distillation strategies help to defend against adversarial attacks. Adversarial attacks cause a model to make incorrect predictions, so improving the robustness of object detection systems is critical.</p> <ul> <li>Increased reliability in security-critical applications.</li> <li>Protection against malicious manipulation.</li> <li>Improved performance in noisy or uncertain environments.</li> </ul> <p>Robustness to adversarial attacks is a critical consideration for object detection systems, particularly in security-sensitive applications. By developing and deploying robust models, researchers can help ensure the safety and reliability of these systems.</p> <h2>Real-Time Object Detection for Edge Devices</h2> <p>There is growing interest in deploying object detection models on edge devices, such as smartphones and embedded systems. This enables real-time object detection without the need for cloud connectivity. However, these devices have limited computational resources, posing significant challenges for model design and optimization.</p> <h3>Model Compression Techniques</h3> <p>Model compression techniques, such as network pruning, quantization, and knowledge distillation, are essential for deploying object detection models on edge devices. Network pruning involves removing less important connections from a network, reducing its size and computational complexity. Quantization reduces the precision of the model&#8217;s weights and activations, further reducing memory footprint and computational requirements.</p> <h3>Hardware Acceleration</h3> <p>Hardware acceleration, such as using specialized processors like GPUs and TPUs, can significantly improve the performance of object detection models on edge devices. These processors are designed to efficiently perform the computations required for deep learning, enabling real-time object detection in resource-constrained environments.</p> <p>Deploying object detection models on edge devices means that there is real-time object detection without reliance on cloud connectivity. Model compression and hardware acceleration are key to keeping up with edge device computational limitations.</p> <ul> <li>Low-latency object detection for real-time applications.</li> <li>Reduced reliance on cloud connectivity.</li> <li>Increased privacy and security.</li> </ul> <p>Real-time object detection on edge devices is a key enabler for a wide range of applications, from autonomous robotics to smart surveillance. By developing efficient models and leveraging hardware acceleration, researchers and developers are making this technology more accessible and practical.</p> <p><!-- Início da área da tabela minimalista --></p> <div style="text-align: center; margin-bottom: 20px; margin-top: 20px;"> <!-- Tabela principal --></p> <table style="border-collapse: collapse; margin: 0 auto; display: inline-table; border: 1px solid #000000; font-family: Arial, sans-serif; font-size: 14px;"> <!-- Cabeçalho da Tabela --></p> <thead> <tr style="background-color: #000000; color: white;"> <th style="text-align: center; width: 30%; border: 1px solid #000000; padding: 8px;">Key Area</th> <th style="border: 1px solid #000000; padding: 8px; text-align: center;">Brief Description</th> </tr> </thead> <p> <!-- Corpo da Tabela --></p> <tbody> <!-- Linha 1 --></p> <tr style="border-bottom: 1px solid #000000; background-color: #f9f9f9;"> <td style="font-weight: bold; text-align: center; border: 1px solid #000000; padding: 8px;">🚀 Deep Learning</td> <td style="border: 1px solid #000000; padding: 8px;">Improving accuracy and efficiency through refined CNNs and capsule networks.</td> </tr> <p> <!-- Linha 2 --></p> <tr style="border-bottom: 1px solid #000000;"> <td style="font-weight: bold; text-align: center; border: 1px solid #000000; padding: 8px;">🤖 Transformer Networks</td> <td style="border: 1px solid #000000; padding: 8px;">Adapting transformers for direct object detection, leveraging self-attention.</td> </tr> <p> <!-- Linha 3 --></p> <tr style="border-bottom: 1px solid #000000; background-color: #f9f9f9;"> <td style="font-weight: bold; text-align: center; border: 1px solid #000000; padding: 8px;">🔬 Few-Shot Learning</td> <td style="border: 1px solid #000000; padding: 8px;">Enabling models to learn from only a few examples through meta-learning.</td> </tr> <p> <!-- Linha 4 (Opcional, se necessário para o tópico 'What are the Latest Trends in Computer Vision Research for Object Detection and Recognition in the US?') --></p> <tr style="background-color: #ffffff;"> <td style="font-weight: bold; text-align: center; border: 1px solid #000000; padding: 8px;">🛡️ Adversarial Robustness</td> <td style="border: 1px solid #000000; padding: 8px;">Developing methods to defend against adversarial attacks.</td> </tr> </tbody> </table> </div> <p><!-- Fim da tabela minimalista --></p> <h2>FAQ Section</h2> <p><!-- FAQ Item 1 --></p> <div class="faq-item"> <div class="faq-question">What are capsule networks, and why are they important?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-1" class="faq-answer"> <p>Capsule networks are a type of neural network that preserve hierarchical relationships between object parts. Unlike traditional CNNs, capsule networks are robust to variations in viewpoint and pose, making them valuable for object detection in complex environments.</p> </div> </div> <p><!-- FAQ Item 2 --></p> <div class="faq-item"> <div class="faq-question">How are transformer networks used in computer vision?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-2" class="faq-answer"> <p>Transformer networks, originally developed for natural language processing, have been adapted for computer vision to capture long-range dependencies and contextual information. Models like DETR and ViT are used for object detection and recognition.</p> </div> </div> <p><!-- FAQ Item 3 --></p> <div class="faq-item"> <div class="faq-question">What is few-shot learning, and why is it relevant to object detection?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-3" class="faq-answer"> <p>Few-shot learning enables models to learn from only a small number of examples. This is particularly useful in scenarios where labeled data is scarce, allowing for rapid adaptation to new object categories with limited data labeling costs.</p> </div> </div> <p><!-- FAQ Item 4 --></p> <div class="faq-item"> <div class="faq-question">How does Explainable AI (XAI) improve object detection systems?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-4" class="faq-answer"> <p>XAI techniques, such as attention visualization and saliency maps, make object detection systems more transparent and understandable to humans. This increases trust in AI systems and improves model debugging and compliance with regulatory requirements.</p> </div> </div> <p><!-- FAQ Item 5 --></p> <div class="faq-item"> <div class="faq-question">Why is robustness to adversarial attacks important in object detection?<br /> <span class="arrow">▼</span></div> <div id="faq-answer-5" class="faq-answer"> <p>Adversarial attacks can cause object detection systems to make incorrect predictions by introducing small perturbations to input images. Robustness is crucial to ensure reliability in security-critical applications and protect against malicious manipulation.</p> </div> </div> <h2>Conclusion</h2> <p>The field of computer vision in the US is rapidly advancing, with significant trends in deep learning models, transformer networks, few-shot learning, explainable AI, and adversarial robustness. These advancements are paving the way for more accurate, efficient, and reliable object detection systems in a wide range of applications.</p> <p><!-- Início da área do botão --></p> <div style="text-align: center;"><a href="/category/ai-research-&amp;-development" style="background-color: #000000; color: white; border: 1px solid #000000; cursor: pointer; padding: 8px 16px; border-radius: 8px; display: inline-block; margin: 0 auto; text-align: center; white-space: nowrap; transition: background-color 0.3s ease; text-decoration: none;" class="broken_link">Read more content</a></div> <p><!-- Fim da área do botão --></p> </div> </div> </div> <div class="author-bio-section"> <div class="author-avatar"> <img alt='' src='https://secure.gravatar.com/avatar/0c41178f1747957ea608c344f8b50b0c200f2e5fd06488356d8e998ef2c263ec?s=80&#038;d=mm&#038;r=g' srcset='https://secure.gravatar.com/avatar/0c41178f1747957ea608c344f8b50b0c200f2e5fd06488356d8e998ef2c263ec?s=160&#038;d=mm&#038;r=g 2x' class='avatar avatar-80 photo' height='80' width='80' decoding='async'/> </div> <div class="author-info"> <h3 class="author-name">Emilly Correa</h3> <p class="author-description">Emilly Correa has a degree in journalism and a postgraduate degree in Digital Marketing, specializing in Content Production for Social Media. With experience in copywriting and blog management, she combines her passion for writing with digital engagement strategies. She has worked in communications agencies and now dedicates herself to producing informative articles and trend analyses.</p> </div> </div> </div> </div> </div> <div class="section section-more"> <div class="container"> <div class="crp_related "><div class="row"><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/ai-for-autonomous-vehicles-in-the-us-challenges-and-opportunities/" class="crp_link post-864"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774461_c9d1bbd9_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="AI for Autonomous Vehicles in the US: Challenges and Opportunities - Cover Image" style="" title="AI for Autonomous Vehicles in the US: Challenges and Opportunities" decoding="async" fetchpriority="high" /></figure><span class="crp_title">AI for Autonomous Vehicles in the US: Challenges and&hellip;</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/ai-in-us-healthcare-transforming-medical-imaging-by-2025/" class="crp_link post-724"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_15_1753772875_9faff153_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="AI in US Healthcare: Transforming Medical Imaging by 2025 - Cover Image" style="" title="AI in US Healthcare: Transforming Medical Imaging by 2025" decoding="async" loading="lazy" /></figure><span class="crp_title">AI in US Healthcare: Transforming Medical Imaging by 2025</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/explainable-ai-xai-for-trustworthy-ai-systems-a-us-research-perspectiv/" class="crp_link post-868"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753773988_0424211e_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="Explainable AI (XAI) for Trustworthy AI Systems: A US Research Perspective - Cover Image" style="" title="Explainable AI (XAI) for Trustworthy AI Systems: A US Research Perspective" decoding="async" loading="lazy" /></figure><span class="crp_title">Explainable AI (XAI) for Trustworthy AI Systems: A&hellip;</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/synthetic-data-for-ai-training-a-us-case-study/" class="crp_link post-844"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753773979_a06209a8_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="Synthetic Data for AI Training: A US Case Study - Cover Image" style="" title="Synthetic Data for AI Training: A US Case Study" decoding="async" loading="lazy" /></figure><span class="crp_title">Synthetic Data for AI Training: A US Case Study</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/emerging-ai-trends-in-cybersecurity-applications-in-the-us/" class="crp_link post-877"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_12_1753774842_cd60f184_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="Emerging AI Trends in Cybersecurity Applications in the US - Cover Image" style="" title="Emerging AI Trends in Cybersecurity Applications in the US" decoding="async" loading="lazy" /></figure><span class="crp_title">Emerging AI Trends in Cybersecurity Applications in the US</span></a></div><div class="col-6 col-md-6 col-lg-4 card"><a href="https://artificialintelligencesolutionss.com/regulating-ai-navigating-the-complex-challenges/" class="crp_link post-715"><figure><img width="360" height="180" src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/07/artificialintelligencesolutionss.com_14_1753772620_93b7167a_cover-360x180.jpg" class="crp_featured crp_thumb thumb-list" alt="Regulating AI: Navigating the Complex Challenges - Cover Image" style="" title="Regulating AI: Navigating the Complex Challenges" decoding="async" loading="lazy" /></figure><span class="crp_title">Regulating AI: Navigating the Complex Challenges</span></a></div></div><div class="crp_clear"></div></div> </div> </div> </article> </div> <!-- END inner --> <script src="https://cdn.jsdelivr.net/npm/swiper@10/swiper-bundle.min.js"></script> <script> document.addEventListener('DOMContentLoaded', function () { const swiperBenefits = new Swiper('.benefits-swiper', { loop: false, spaceBetween: 16, pagination: { el: '.swiper-benefits-pagination', clickable: true }, breakpoints: { 0: { slidesPerView: 1 }, 768: { slidesPerView: 3 }, 1024: { slidesPerView: 5 } } }); }); </script> <script> document.addEventListener('DOMContentLoaded', function () { const postSwiper = new Swiper('.home-posts-mobile', { loop: false, spaceBetween: 30, slidesPerView: 1, centeredSlides: true, initialSlide: 0, autoHeight: false, pagination: { el: '.home-posts-mobile .swiper-pagination', clickable: true }, navigation: { nextEl: '.home-posts-mobile .swiper-button-next', prevEl: '.home-posts-mobile .swiper-button-prev', }, breakpoints: { 480: { slidesPerView: 1, }, 640: { slidesPerView: 1, }, 768: { slidesPerView: 1, } } }); }); </script> <script> document.addEventListener('DOMContentLoaded', function () { document.querySelectorAll('.search-toggle').forEach(function (toggle) { toggle.addEventListener('click', function (e) { const container = toggle.closest('.search-container'); container.classList.toggle('open'); e.stopPropagation(); }); }); document.addEventListener('click', function (e) { document.querySelectorAll('.search-container.open').forEach(function (container) { if (!container.contains(e.target)) { container.classList.remove('open'); } }); }); }); </script> <footer class="footer-custom" style="background-color: #0d47a1; color: #ffffff;"> <div class="container"> <div class="footer-columns" style="padding: 60px 0;"> <!-- Logo + texto --> <div class="footer-logo-col" style="text-align: center; margin-bottom: 30px;"> <img src="https://artificialintelligencesolutionss.com/wp-content/uploads/2025/05/artificialintelligencesolutionss.com_.png" alt="Logo" width="180" style="margin: 0 auto 20px;"> </div> <!-- Grupo de colunas --> <div class="footer-columns-group"> <div class="footer-col"> <h4>Company</h4> <ul id="menu-menu-principal-1" class="footer-menu" itemscope itemtype="http://www.schema.org/SiteNavigationElement"><li class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-569"><a href="https://artificialintelligencesolutionss.com/category/ai-business-applications/">AI Business Applications</a></li> <li class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-570"><a href="https://artificialintelligencesolutionss.com/category/ai-ethics-e-governance/">AI Ethics &amp; Governance</a></li> <li class="menu-item menu-item-type-taxonomy menu-item-object-category menu-item-571"><a href="https://artificialintelligencesolutionss.com/category/ai-in-healthcare/">AI in Healthcare</a></li> <li class="menu-item menu-item-type-taxonomy menu-item-object-category current-post-ancestor current-menu-parent current-post-parent menu-item-572"><a href="https://artificialintelligencesolutionss.com/category/ai-research-e-development/">AI Research &amp; Development</a></li> </ul> </div> <div class="footer-col"> <h4>Legal</h4> <ul id="menu-menu-rodape" class="footer-menu" itemscope itemtype="http://www.schema.org/SiteNavigationElement"><li id="menu-item-565" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-565"><a href="https://artificialintelligencesolutionss.com/about-us/">About Us</a></li> <li id="menu-item-566" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-566"><a href="https://artificialintelligencesolutionss.com/contact/">Contact</a></li> <li id="menu-item-567" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-567"><a href="https://artificialintelligencesolutionss.com/privacy-policy/">Privacy Policy</a></li> <li id="menu-item-568" class="menu-item menu-item-type-post_type menu-item-object-page menu-item-568"><a href="https://artificialintelligencesolutionss.com/terms-and-conditions/">Terms and Conditions</a></li> </ul> </div> </div> <!-- Coluna de Transparência --> <div class="footer-col transparency"> <h4>Disclaimer</h4> <p>The information provided on artificialintelligencesolutionss.com is for informational purposes only. We make no representations or warranties of any kind, express or implied, about the completeness, accuracy, reliability, suitability, or availability with respect to the website or the information contained on the website. We are not liable for any losses or damages arising from the use of this information.</p> </div> </div> </div> <!-- Linha separadora de tela cheia --> <div style="width: 100%; border-top: 1px solid #1565c0;"></div> <!-- Container final de copyright --> <div style="width: 100%; background-color: #0a3880; padding: 12px 0; color: #ffffff; text-align: center;"> <div class="container"> <p style="font-size: 12px; margin: 0;">© 2025 artificialintelligencesolutionss.com. All rights reserved.</p> <p style="font-size: 11px; margin: 5px 0 0 0; opacity: 0.8;"></p> </div> </div> </footer> <script type="speculationrules"> {"prefetch":[{"source":"document","where":{"and":[{"href_matches":"\/*"},{"not":{"href_matches":["\/wp-*.php","\/wp-admin\/*","\/wp-content\/uploads\/*","\/wp-content\/*","\/wp-content\/plugins\/*","\/wp-content\/themes\/ddmp-theme\/*","\/*\\?(.+)"]}},{"not":{"selector_matches":"a[rel~=\"nofollow\"]"}},{"not":{"selector_matches":".no-prefetch, .no-prefetch a"}}]},"eagerness":"conservative"}]} </script> <script id="ckyBannerTemplate" type="text/template"><div class="cky-overlay cky-hide"></div><div class="cky-btn-revisit-wrapper cky-revisit-hide" data-cky-tag="revisit-consent" data-tooltip="Consent Preferences" style="background-color:#0056A7"> <button class="cky-btn-revisit" aria-label="Consent Preferences"> <img src="https://artificialintelligencesolutionss.com/wp-content/plugins/cookie-law-info/lite/frontend/images/revisit.svg" alt="Revisit consent button"> </button></div><div class="cky-consent-container cky-hide" tabindex="0"> <div class="cky-consent-bar" data-cky-tag="notice" style="background-color:#FFFFFF;border-color:#F4F4F4"> <div class="cky-notice"> <p class="cky-title" role="heading" aria-level="1" data-cky-tag="title" style="color:#212121">We value your privacy</p><div class="cky-notice-group"> <div class="cky-notice-des" data-cky-tag="description" style="color:#212121"> <p>We use cookies to enhance your browsing experience, serve personalised ads or content, and analyse our traffic. By clicking "Accept All", you consent to our use of cookies.</p> </div><div class="cky-notice-btn-wrapper" data-cky-tag="notice-buttons"> <button class="cky-btn cky-btn-customize" aria-label="Customise" data-cky-tag="settings-button" style="color:#1863DC;background-color:transparent;border-color:#1863DC">Customise</button> <button class="cky-btn cky-btn-reject" aria-label="Reject All" data-cky-tag="reject-button" style="color:#1863DC;background-color:transparent;border-color:#1863DC">Reject All</button> <button class="cky-btn cky-btn-accept" aria-label="Accept All" data-cky-tag="accept-button" style="color:#FFFFFF;background-color:#1863DC;border-color:#1863DC">Accept All</button> </div></div></div></div></div><div class="cky-modal" tabindex="0"> <div class="cky-preference-center" data-cky-tag="detail" style="color:#212121;background-color:#FFFFFF;border-color:#F4F4F4"> <div class="cky-preference-header"> <span class="cky-preference-title" role="heading" aria-level="1" data-cky-tag="detail-title" style="color:#212121">Customise Consent Preferences</span> <button class="cky-btn-close" aria-label="[cky_preference_close_label]" data-cky-tag="detail-close"> <img src="https://artificialintelligencesolutionss.com/wp-content/plugins/cookie-law-info/lite/frontend/images/close.svg" alt="Close"> </button> </div><div class="cky-preference-body-wrapper"> <div class="cky-preference-content-wrapper" data-cky-tag="detail-description" style="color:#212121"> <p>We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.</p><p>The cookies that are categorised as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. </p><p>We also use third-party cookies that help us analyse how you use this website, store your preferences, and provide the content and advertisements that are relevant to you. These cookies will only be stored in your browser with your prior consent.</p><p>You can choose to enable or disable some or all of these cookies but disabling some of them may affect your browsing experience.</p> </div><div class="cky-accordion-wrapper" data-cky-tag="detail-categories"> <div class="cky-accordion" id="ckyDetailCategorynecessary"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Necessary" data-cky-tag="detail-category-title" style="color:#212121">Necessary</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchnecessary"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div><div class="cky-accordion" id="ckyDetailCategoryfunctional"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Functional" data-cky-tag="detail-category-title" style="color:#212121">Functional</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchfunctional"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div><div class="cky-accordion" id="ckyDetailCategoryanalytics"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Analytics" data-cky-tag="detail-category-title" style="color:#212121">Analytics</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchanalytics"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div><div class="cky-accordion" id="ckyDetailCategoryperformance"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Performance" data-cky-tag="detail-category-title" style="color:#212121">Performance</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchperformance"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Performance cookies are used to understand and analyse the key performance indexes of the website which helps in delivering a better user experience for the visitors.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div><div class="cky-accordion" id="ckyDetailCategoryadvertisement"> <div class="cky-accordion-item"> <div class="cky-accordion-chevron"><i class="cky-chevron-right"></i></div> <div class="cky-accordion-header-wrapper"> <div class="cky-accordion-header"><button class="cky-accordion-btn" aria-label="Advertisement" data-cky-tag="detail-category-title" style="color:#212121">Advertisement</button><span class="cky-always-active">Always Active</span> <div class="cky-switch" data-cky-tag="detail-category-toggle"><input type="checkbox" id="ckySwitchadvertisement"></div> </div> <div class="cky-accordion-header-des" data-cky-tag="detail-category-description" style="color:#212121"> <p>Advertisement cookies are used to provide visitors with customised advertisements based on the pages you visited previously and to analyse the effectiveness of the ad campaigns.</p></div> </div> </div> <div class="cky-accordion-body"> <div class="cky-audit-table" data-cky-tag="audit-table" style="color:#212121;background-color:#f4f4f4;border-color:#ebebeb"><p class="cky-empty-cookies-text">No cookies to display.</p></div> </div> </div> </div></div><div class="cky-footer-wrapper"> <span class="cky-footer-shadow"></span> <div class="cky-prefrence-btn-wrapper" data-cky-tag="detail-buttons"> <button class="cky-btn cky-btn-reject" aria-label="Reject All" data-cky-tag="detail-reject-button" style="color:#1863DC;background-color:transparent;border-color:#1863DC"> Reject All </button> <button class="cky-btn cky-btn-preferences" aria-label="Save My Preferences" data-cky-tag="detail-save-button" style="color:#1863DC;background-color:transparent;border-color:#1863DC"> Save My Preferences </button> <button class="cky-btn cky-btn-accept" aria-label="Accept All" data-cky-tag="detail-accept-button" style="color:#ffffff;background-color:#1863DC;border-color:#1863DC"> Accept All </button> </div></div></div></div></script><script type="text/javascript" src="https://artificialintelligencesolutionss.com/wp-content/themes/ddmp-theme/js/search-toggle.js?ver=1753802936" id="search-toggle-js"></script> </body> </html>